摘要
Time synchronous averaging of vibration data is a fundament technique forgearbox diagnosis. Currently, this technique relies on hardware tachometer to give phase synchronousinformation. Empirical mode decomposition (EMD) is introduced to replace time synchronous averagingof gearbox vibration signal. With it, any complicated dataset can be decomposed into a finite andoften small number of intrinsic mode functions (IMF). The key problem is how to assure thatvibration signals deduced by gear defects could be sifted out by EMD. The characteristic vibrationsignals of gear defects are proved IMFs, which makes it possible to utilize EMD for the diagnosis ofgearbox faults. The method is validated by data from recordings of the vibration of a single-stagespiral bevel gearbox with fatigue pitting. The results show EMD is powerful to extractcharacteristic information from noisy vibration signals.
Time synchronous averaging of vibration data is a fundament technique forgearbox diagnosis. Currently, this technique relies on hardware tachometer to give phase synchronousinformation. Empirical mode decomposition (EMD) is introduced to replace time synchronous averagingof gearbox vibration signal. With it, any complicated dataset can be decomposed into a finite andoften small number of intrinsic mode functions (IMF). The key problem is how to assure thatvibration signals deduced by gear defects could be sifted out by EMD. The characteristic vibrationsignals of gear defects are proved IMFs, which makes it possible to utilize EMD for the diagnosis ofgearbox faults. The method is validated by data from recordings of the vibration of a single-stagespiral bevel gearbox with fatigue pitting. The results show EMD is powerful to extractcharacteristic information from noisy vibration signals.