期刊文献+

QUANTUM THEORY FOR THE BINOMIAL MODEL IN FINANCE THEORY 被引量:1

QUANTUM THEORY FOR THE BINOMIAL MODEL IN FINANCE THEORY
原文传递
导出
摘要 In this paper, a quantum model for the binomial market in finance is proposed. We show that its risk-neutral world exhibits an intriguing structure as a disk in the unit ball of R^3, whose radius is a function of the risk-free interest rate with two thresholds which prevent arbitrage opportunities from this quantum market. Furthermore, from the quantum mechanical point of view we re-deduce the Cox-Ross-Rubinstein binomial option pricing formula by considering Maxwell-Boltzmann statistics of the system of N distinguishable particles.
作者 CHENZeqian
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第4期567-573,共7页 系统科学与复杂性学报(英文版)
关键词 binomial markets quantum models maxwell-boltzmann statistics OPTIONS risk-neutral world 量子论理论 二项式市场 财政理论 麦克斯韦-玻尔兹曼统计 购买权 冒险-中立世界
  • 相关文献

参考文献9

  • 1P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, Oxford, 1958.
  • 2J.C. Cox, S.A. Ross and IVl. Rubinstein, Option pricing: a simplified approach, Journal of Finance Economics, 1979, 7(3): 229-263.
  • 3Zeqian Chen, Tie meaning of quantum finance (in Chinese), Acta Mathematica Scientia, 2003,23A(1): 115-128.
  • 4Zeqian Chen, Quantum finance: The finite dimensional case, www.arxiv.org/quant-ph/0112158.
  • 5A.N. Shiryaev, Essentials of Stochastic Finance (Facts, Models, Theory), World Scientific, Singapore, 1999.
  • 6J.C.Hull, Options, Futures and Other Derivatives, 4th Edition,Prentice-Hall Inc., Prentice, 2000.
  • 7K.P. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser Verlag, Basel,1992.
  • 8F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81: 637-659.
  • 9R.C. Merton, Continuous-time Finance, Basil Black-Well, Cambridge, MA, 1990.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部