ON THE INITIAL VALUE PROBLEM FOR THE BIPOLAR SCHRODINGER-POISSON SYSTEM
被引量:1
摘要
In this paper, we prove the existence and uniqueness of global solutions in H^s(R^3) ( s∈R, s≥0) for the initial value problem of the bipolar Schrodinger-Poisson systems.
参考文献8
-
1Brezzi F., Markowich P. A., The three-dimensional Wigner-Poisson problem: existence,Uniqueness and approximation, Math. Meth. Appl. Sci., 14(1991), 35-62.
-
2Markowich P. A., Rein G., Wolansky G., Existence and nonlinear stability of stationary states of the SchrSdinger-Poisson system, J. Statist. Phys., 106(2002), 1221-1239.
-
3Castella F., L^2 solutions to the SchrSdinger-Poisson system: existence, uniqueness, time behaviour, and smoothing effects, Math. Models Methods Appl. Scz., 7(1997), 1051-1083.
-
4Jungel A., Wang S., Convergence of nonlinear SchrSdinger-Poisson systems to the compressible Euler equations, Comm. Part. Diff. Eqs., 28(2003), 1005-1022.
-
5Wang B. X., Guo B. L., On the initial value problem and scattering of solutions for the generalized D&vey-Stewartson systems (Chinese), Science in China (Series A), 31(2001),413-421.
-
6Bergh J., LSfstrSm J., Interpolation space, Springer-Verlag, Berlin 1976.
-
7Keel M., Tao T., Endpoint strichartz estimate, Amer. J. Math, 120(1998), 955-980.
-
8Wang B.X., Large time behavior of solutions for critical and subcritical complex Ginzburg-Landau equations in H1 (Chinese), Science in China (Series A), 32(2001), 657-666.