期刊文献+

一种基于密度的增量式网格聚类算法

An Incremental Grid Density - Based Clustering Algorithm
下载PDF
导出
摘要 增量算法的要求是聚类特征一般是可加的、非迭代的。文中提出了一种基于密度的网格聚类算法GDCLUS,并在此 基础上提出了增量式算法IGDCLUS,它可发现任意形状的聚类,具有高效、易实现的特点,适用于数据库周期性地增量环境下的 数据批量更新。 Incremental clustering algorithm featured normally in addable and non-iterative. This paper introduces a grid density-based clustering algorithm-GDCLUS,and an incremental algorithm-IGDCLUS, which can find high effectively arbitrary shape clusters,and is applicable in periodically incremental environment.
出处 《皖西学院学报》 2004年第5期91-94,共4页 Journal of West Anhui University
关键词 密度 网格 聚类算法 增量算法 数据库 数据挖掘 clustering density grid incremental algorithm
  • 相关文献

参考文献2

二级参考文献16

  • 1Sheikholeslami G, Chatterjee S, Zhang A. Wave-Cluster: A multi-resolution clustering approach for very large spatial databases. In:Proceedings of the 24th International Conference on Very Large Databases. New York, 1998. 428~439.
  • 2Aggrawal R, Gehrke J, Gunopulos D, Raghawan P. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle, WA, 1998.94~ 105.
  • 3Wang W, Yang J, Muntz R. STING: A statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Databases. Athens, Greece, 1997.186~ 195.
  • 4Hinneburg A, Keim DA. An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD'98). New York, 1998.58~65.
  • 5Xing EP, Karp RM. CLIFF: Clustering of high dimensional microarray data via iterative feature filtering using normalized cuts.BIOINFORMATICS, 2001,1(1):1~9.
  • 6Hinneburg A, Keim DA, Brandt W. Clustering 3D-structures of small amino acid chains for detecting dependences from their sequential context in proteins. In: Proceedings of the IEEE International Symposium on BioInformatics and Biomedical Engineering. Washington, DC, 2000. 43-49.
  • 7Xu X, Ester M, Kriegel H, Sander J. A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings of the 14th International Conference on Data Engineering, ICDE'98. Orlando, FL, 1998. 324~331.
  • 8Silverman B. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.72~113.
  • 9Han J, Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2000.335~398.
  • 10Berchtold S, Keim D, Kriegel HP. The X-tree: An index structure for high-dimensional data. In: Proceedings of the International Conference on Very Large Databases. Bombay, India, 1996.28~39.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部