摘要
According to modeling principle that a model must be more accurate ifincluding more flow information, and based on the Cauchy-Helmholtz theorem and the Smagorinskymodel, a second-order dynamic model with double dynamic coefficients was proposed by applyingdimension analyses. The Subgrid-Scale (SGS) stress is a function of both strain-rate tensor androtation-rate tensor. The SIMPLEC algorithm and staggering grid system was applied to give thesolution of the discretized governing equations, and for the turbulent flow through a 90° bend, thedistributions of velocity and pressure were achieved. The comparison between experimental data andsimulation results at a Reynolds- number 40000 shows a good agreement and implies that this model ispracticable and credible.
According to modeling principle that a model must be more accurate ifincluding more flow information, and based on the Cauchy-Helmholtz theorem and the Smagorinskymodel, a second-order dynamic model with double dynamic coefficients was proposed by applyingdimension analyses. The Subgrid-Scale (SGS) stress is a function of both strain-rate tensor androtation-rate tensor. The SIMPLEC algorithm and staggering grid system was applied to give thesolution of the discretized governing equations, and for the turbulent flow through a 90° bend, thedistributions of velocity and pressure were achieved. The comparison between experimental data andsimulation results at a Reynolds- number 40000 shows a good agreement and implies that this model ispracticable and credible.
基金
ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(GrantNo :5 0 176 0 2 2 )