期刊文献+

随机Duffing-van der Pol系统响应的Chebyshev多项式逼近 被引量:1

THE ORTHOGONAL POLYNOMICAL APPROXIMATION FOR RESPONSE PROBLEM OF STOCHASTIC DUFFING-VAN DER POL SYSTEM
下载PDF
导出
摘要 对一类含随机参数的Duffing-vanderPol系统,运用Chebyshev多项式逼近法,将其转化成等价的确定性扩阶系统;通过求解等价系统在谐和激励下的稳态响应,可得Duffing-vandetPol系统相应的稳态随机响应,研究了当谐和激励的振幅变化时,含随机参数的Duffing-vanderPol系统的对称破裂分岔和倍周期分岔.数值模拟结果与数值解比较表明:正交多项式逼近法能有效地解决此类非线性随机动力系统的响应问题. The Chebyshev polynomial approximation was applied to the dynamical response problem of the stochastic Duffing-van der Pol system with random parameters. First,the stochastic Duffing-van der Pol system was reduced into an equivalent deterministic one for substitution. Then, the response of the stochastic Duffing-van der Pol system can be obtained by numerical methods for this equivalent deterministic system. Moreover, the symmetry-breaking bifurcation and period-doubling bifurcation of the stochastic Duffing- van der Pol system were presented while the excitation frequency vary. Numerical simulation implies that the proposed method is a new effective approach to dynamical responses of stochastic nonlinear systems.
出处 《动力学与控制学报》 2004年第3期80-84,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(10332030)~~
关键词 摄动法 动力响应 随机Duffing-vander Pol系统 CHEBYSHEV多项式 动力系统 对称破裂分岔 倍周期分岔 Chebyshev polynomial,stochastic Duffing-van der Pol system,symmetry-breaking bifurcation,period-doubling bifurcation
  • 相关文献

参考文献14

  • 1[1]Shinozuka M.Probability modeling of concrete structures.Journal of the Engineerring Mechanics Division,ASCE,1972,(98):1433~1451
  • 2[2]Shinozuka M.Newman expansion for stochastic finite element analysis.Journal of the Engineerring Mechanics,1988,(114):1335~1354
  • 3[3]Liu WK,Besterfied GH,Belytschko P.Variational approach to probabilistic finite elements.Journal of the Engineerring Mechanics,1988,(114):2115 ~ 2133
  • 4[4]Kleiber M,Hien TD.The stochastic finite element method:basic perturbation technique and computer implementation.New York:Wiley Press,1992
  • 5[5]Benaroya H,Reliak M.Finite element method in probabilistic structural analysis.A selective Review Applied Mechanics Review,1988,(41):201~213
  • 6[6]Spanos PD,Ghanem RG.Stochastic finite expansion for random media.J Eng Mech Dive ASCE,1989,115 (4):1035~1053
  • 7[7]Jense H,Iwan WD.Response of system with uncertain parameters to stochastic excitation.ASCE Eng Mech,1992,118(10):1012~ 1025
  • 8[9]Li J,Liao S.Response Analysis of Stochastic Parameter Structure under nonstationary random excitation.Computational Mechanics,2001,21:61~68
  • 9[10]Fang T,Leng XL,Song CQ.Chebyshev polynomial approximation for dynamical response problem of random system.Journal of sound and vibration,2003,226(198):198~206
  • 10[12]Guckenheimer J,Holmes P.Nonlinear Oscillation,Dynamical Systems,and Bifurcation of Vector Fields.Berlin:Springer,1983

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部