摘要
对一类含随机参数的Duffing-vanderPol系统,运用Chebyshev多项式逼近法,将其转化成等价的确定性扩阶系统;通过求解等价系统在谐和激励下的稳态响应,可得Duffing-vandetPol系统相应的稳态随机响应,研究了当谐和激励的振幅变化时,含随机参数的Duffing-vanderPol系统的对称破裂分岔和倍周期分岔.数值模拟结果与数值解比较表明:正交多项式逼近法能有效地解决此类非线性随机动力系统的响应问题.
The Chebyshev polynomial approximation was applied to the dynamical response problem of the stochastic Duffing-van der Pol system with random parameters. First,the stochastic Duffing-van der Pol system was reduced into an equivalent deterministic one for substitution. Then, the response of the stochastic Duffing-van der Pol system can be obtained by numerical methods for this equivalent deterministic system. Moreover, the symmetry-breaking bifurcation and period-doubling bifurcation of the stochastic Duffing- van der Pol system were presented while the excitation frequency vary. Numerical simulation implies that the proposed method is a new effective approach to dynamical responses of stochastic nonlinear systems.
出处
《动力学与控制学报》
2004年第3期80-84,共5页
Journal of Dynamics and Control
基金
国家自然科学基金资助项目(10332030)~~