摘要
用数值方法对一类参数激励的非线性DUffing-Van der Pol振子进行了研究.着重考察了系统随周期驱动力角频率ω改变的周期分岔序列及混沌行为.给出了各种振荡态和混沌态随时间的循环模式.发现在一定的ω值区间内,周期运动和混沌运动交替出现,周期运动会失稳直接进入混沌态.对通向混沌的道路问题也作了一些探讨.
A parametrically excited Duffing-Van der Pol oscillator is examined by numerical simulation. The period
bifurcation series and chaotic behaviour caused by the variation of forcing frequency is studied emphatically.
The circular models of various vibrating and chaotic states are given. It is found that periodic and chaotic mo-
tion emerge alternately in a certain parametric region of ω. Periodic motion can change into chaos motion di-
rectely. Finally, the patterns for transition from period to chaos are discussed.
出处
《科技通报》
1993年第1期35-40,共6页
Bulletin of Science and Technology
关键词
周期分岔
混沌
相图
非线性振子
Duffing-Van der Poloscillator
period bifurcation
chaos
Melnikov method
phase portrait