期刊文献+

基于四方向导数信息的图像非线性扩散去噪 被引量:3

Nonlinear Diffusion Model Based on Four Directional Derivatives for Image Denoising
下载PDF
导出
摘要 分析图像去噪的非线性扩散模型的离散解,针对其中的梯度获取问题,考虑一种新的基于四方向导数信息的图像非线性扩散去噪方法。该方法将原有非线性扩散去噪中的二阶扩散矩阵扩展为四阶扩散矩阵,并由边缘的实际取向来决定像素点邻域内八个点对该点去噪的贡献大小,有利于更好的保护边缘和对边缘定向。数值计算结果表明,新方法较原有方法具有更高的峰值信噪比。 Have analyzed the discrete solution of the nonlinear diffusion model for image denoising, and put forward a new model based on four directional derivatives aimed to solve the problem of gradient-obtaining in the old model, the new model adapts the two-order diffusion tensor in the old model to a four-order diffusion tensor, and decides the power of the eight pixels in the neighborhood based on the direction of the edge, which is propitious to preserve the edges and to direct them. Numerical results show that the new model has higher peak signal to noise ratio than the known model.
作者 谢美华
出处 《红外技术》 CSCD 北大核心 2004年第6期51-53,61,共4页 Infrared Technology
基金 国家自然科学基金(编号:60272013) 全国优秀博士论文作者专项基金(编号:200140)
关键词 方向导数 非线性扩散 离散解 四阶 二阶 矩阵 邻域 图像 去噪 峰值信噪比 nonlinear diffusion, directional derivatives, image denoising
  • 相关文献

参考文献9

  • 1Arthur Chun-Chieh Shih, Hong-Yuan Mark Liao, Chun_Shien Lu. A New Iterated Two-Band Diffusion Equation: Theory and Its Application[J]. IEEE Transaction on Image Processing, Vol. 12, No.4, April 2003.
  • 2Ilya Pollak, Alan S.Willsky, Hamid Krim. Image Segmentation and Edge Enhancement with Stabilized Inverse Diffusion Equations[J]. IEEE Transaction on Image Processing, Feb., 2000, Vol.9, No.2 256-266.
  • 3Joachim Weickert. A Review of Nonlinear Diffusion Filtering [R]. Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science, Vol.1252,Springer, Berlin, 1997: 3-28. Invited paper.
  • 4P.PeronaandJ.Malik,Scale-spaceandedgedetectionusinganisotropicdiffuusion.IEEEtrans. on Patt. Anal. andMach. Intell.,July 1990, vo1.12(7):629-639.
  • 5Joachim Weickert. Coherence-Enhancing Diffusion Filtering[J]. International Journal of Computer Vision, 1999, Vol.31, No.2/3:111 - 127.
  • 6Guy Gilboa, Yehoshua Y. Zeevi, Nir A.Sochen. Forward and Backward Diffusion Processes for Adaptive Image Enhancement Denosing [J]. IEEE Trans. On Image processing, 2002(7).
  • 7Ilya Pollak, Alan S.Willsky, Hamid Krim. Image Segmentation and Edge Enhancement with Stabilized Inverse Diffusion Equations[J]. IEEE Transaction on Image Processing, Feb., 2000, Vol.9, No.2 256-266.
  • 8Guy Gilboa, Yehoshua Y. Zeevi, Nir A. Sochen. Complex Diffusion Process for Image Filtering [R]. Scale-Space'01, LNCS 2106, Springer-Verlay, 2001:299-307.
  • 9Yu-Li You, M. Kaveh, Fourth-Order Partial Differential Equations for Noise Removal[J]. IEEE Trans. On Image Processing, Oct., 2000, Vol. 9(10): 1723- 1730.

同被引文献31

  • 1付树军,阮秋琦,王文洽.偏微分方程(PDEs)模型在图像处理中的若干应用[J].计算机工程与应用,2005,41(2):33-35. 被引量:14
  • 2贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法[J].计算机学报,2005,28(5):882-891. 被引量:28
  • 3曾勋勋,陈飞,王美清.基于同向梯度扩散的图像去噪方法[J].福州大学学报(自然科学版),2006,34(2):199-202. 被引量:1
  • 4仵冀颖,阮秋琦.偏微分方程在图像去噪中的应用[J].计算机工程与应用,2006,42(22):69-71. 被引量:10
  • 5PERONA P, MALIK J. Scale space and edge detection using anisotropic diffusion [ J]. IEEE Transactions on Pattena Analysis and Machine Intelligence, 1990, 12(7) :629 -639.
  • 6RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physiea D, 1992, 60(1/4) : 259 - 268.
  • 7JOURLIN M, PHINOLI J C. A model for logarithmic image processing [J]. Mierose, 1988, 149(1) :22 -35.
  • 8PINOLI J C. Modelisation and traitement des image logarithmiques: Theorie and applications fondamantales, Report No. 6[ R]. Saint - Etienne: University of Saint-Etienne, Department of Mathematics, 1992.
  • 9ANDERSON G L, NETRAVALI A N. Image restoration based on a subjective criterion [J]. IEEE Transactions on System, Man and Cybernetics, 1976, SMC-6:845 - 853.
  • 10KARUILASEKERA S A, KINGSBURY N G. A distortion measure for blocking artifacts in images based on human visual sensitivity [J]. IEEE Transactions on Image Processing, 1995, 4(6):713 - 724.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部