期刊文献+

有限域上二次型的密码学特性 被引量:1

Cryptography Property of Quadratic Forms over Finite Fields
下载PDF
导出
摘要 该文给出有限域上二次型的紧致表示形式 ,讨论了它们的密码学特性 ;给出了特征等于 2的有限域上 ,二次型是平衡函数的充要条件 ,并指出特征不等于 2的有限域上 ,二次型都不是平衡函数 ;给出了二次函数是平衡函数的充要条件 .从该文结果可以看出Pieprzyk等用二次函数构造的方案是错误的 . The compact form of quadratic forms over finite field is presented, the cryptography property is considered. The sufficient and necessary conditions that quadratic forms is balance over finite fields of characteristic 2 are presented. It is pointed that there are not balance quadratic forms over finite fields whose characteristic is not equal to 2. The sufficient and necessary conditions that quadratic function is balance are presented. Using the result obtained in the paper, authors point out the errors in the papers published by J. Pizprzyk in 2001, 2002.
作者 马文平
出处 《计算机学报》 EI CSCD 北大核心 2004年第11期1523-1527,共5页 Chinese Journal of Computers
基金 国家自然科学基金 (60 3 73 10 4)资助 .
关键词 平衡性 二次型 欺骗免疫秘密共享 密码学 平衡函数 Quadratic programming Theorem proving
  • 相关文献

参考文献9

  • 1Matsumoto T., Imai H., Harashima H., Miyakawa H.. A theory of constructing multivariate- polynomial tuple asymmetric Cryptosystems. In: Proceedings of the 1986 Symposium on Cryptography and Information Security, Japan, 1986, 123~130
  • 2Fell II., Diffie W.. Analysis of a public key approach based on polynomial substitution. In: Williancs H.C. ed.. Advances in Cryptology-Crypto'85. Berlin: Springer-Verlag, 1986, 340~349
  • 3Zhou T.. A note on Boolean public key cryptosystem of the second order. Journal of China Institute of Communication, 1986, 7(1): 85~92
  • 4Matsumoto T., Imai H.. Public quadratic polynomial tuples for efficient signature verification and message encryption. In: Goldwasser S.ed.. Advances in Cryptology-Crypto'88. Berlin: Springer-Verlag, 1988, 419~455
  • 5Pieprzyk J., Zhang Xian-Mo. Multisecret sharing immune against Cheating. Informatica-An International Journal of Computing and Informatics, 2002, 26(3): 271~278
  • 6Pieprzyk J., Zhang Xian-Mo. Cheating prevention in secret sharing over GF(pt). In: Rangan C.P., Ding Cun-Sheng ed.. INDOCRYPT 2001, Lecture Notes in Computer Science 2247. Berlin: Springer-Verlag, 2001, 271~278
  • 7Pieprzyk J., Zhang Xiao-Mo. Construction of cheating immune secret sharing. In: Kim K. J. ed.. ICISC 2001, Leture Notes in Computer Science 2288. Berlin: Springer-Verlag, 2001, 226~243
  • 8McEliece R.J.. Finite Fields for Computer Scientists and Engineers. Holand: Kluwer Academic Publisher, 1987
  • 9Nyberg K., Knudsen L.R.. Provable security against differential cryptanalysis. In: Brassard G. ed.. Advances in Cryptology-Crypto'89. Berlin: Springer-Verlag, 1989, 115~130

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部