期刊文献+

拟Bent函数的性质和构造 被引量:4

Some Properties and Constructions of Quasi-Bent Functions
原文传递
导出
摘要 本文将基本2-群中拟Bent函数的概念推广到一般的有限Abel群中,统一了目前几乎所有的Bent函数概念,完全刻画了一类拟Bent函数和Bent函数的本质联系,给出了几种拟Bent函数的构造方法,拟Bent函数和相对差集的一种关系以及一种用拟Bent函数构造Bent函数的方法.最后,利用Galois环和组合集,找到一类拟Bent函数. In this paper, we generalize the concept of quasi-bent function in elementary 2-groups to general finite abelian groups, and our quasi-bent function concept concludes nearly all concepts about bent functions up to now. Several constructions are given, and the deep relationship between bent functions and some kind of quasi-bent functions is found. In addition, we find some connection between relative difference sets and quasi-bent functions, and find a way to construct bent functions from quasi-bent functions. In the end, we present some quasi-bent functions by the usage of Galois ring and Building sets.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2004年第6期1175-1184,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金重大研究计划(901104035) 国家自然科学基金资助项目(19971096)
关键词 BENT函数 拟BENT函数 GALOIS环 Bent function Quasi-Bent function Galois ring
  • 相关文献

参考文献15

  • 1Rothaus O. S., On "bent" functions, J. Comb. Th. (A), 1976, 20: 300-305.
  • 2Kumar P. V., Scholtz R. A., and Welch L. R., Generalized bent functions and their properties, J. Comb. Th.(A), 1985, 40(40): 90-107.
  • 3Carlet C., Partially-Bent functions, Advances in Cryptology-Crypt '92, Santa Barbara, California, USA:Springer-Verlag, 1993, 280-291.
  • 4Liu W. F., Li S. Q., Teng J. H., Properties and applications of k-ary quasi-bent functions, The 7-th China Youths Conference of Communation, Nanjing: Publishing House of Elec. Industry, 2001, 939-943 (in Chinese).
  • 5Hu L., Pei D. Y., Feng D. G., Constructions of bent functions, CCICS '2001, Shanghai: Science Press, 249-253(in Chinese).
  • 6Hou X. D., Bent Functions, partial difference sets, and quasi-Frobenius local rings, Designs, Codes and Cryptography, 2000, 20: 251-268.
  • 7Dillon J. F., Elementary Hadamard difference sets, Ph. D. Dissertation, Univ. of Maryland, 1974.
  • 8Hou X. D., q-ary bent functions constructed from chain rings, Finite Fields Appl., 1998, 4: 55-61.
  • 9Zhao Y. Q., The properties and constructions of partially bent functions and generalized partially bent functions, Ph. D. Dissertation, Univ. of Info. Engineering, 2000 (in Chinese).
  • 10McDonald B. R., Finite rings with identity, New York: Dekker, 1974.

同被引文献32

  • 1张习勇,韩文报,李世取.一种拟Bent函数的构造方法[J].工程数学学报,2005,22(1):118-122. 被引量:1
  • 2刘志高,张福泰,徐倩.一类多输出Bent函数的构造[J].南京师范大学学报(工程技术版),2005,5(2):46-49. 被引量:3
  • 3何军,张建中.一类k阶拟Bent函数的构造[J].陕西师范大学学报(自然科学版),2005,33(3):18-20. 被引量:3
  • 4刘志高,张福泰,徐倩.一类多输出半Bent函数的构造及其密码学性质[J].南京师范大学学报(工程技术版),2006,6(1):38-42. 被引量:2
  • 5Rothaus O.S.On Bent Functions[J].Journal of Combinatorial Theory (Series A),1976,20:300-305.
  • 6李世取,刘文芬,滕吉红.k阶拟Bent函数的性质及其应用[A].谢仁宏等主编.第7届全国青年通信学术会议论文集[C].北京:电子工业出版社,2001,939-943.
  • 7ZHENG YL,ZHANG XM.On Plateau Functions[J].IEEE Tranaactions on Information Theory,2001,47 (3):1215 -1223.
  • 8Pieprzyk J,Finkelstein G.Towards Effective Nonlinear Cryptosystem Design[A].IEEE Proceedings,Part E:Computers and Digital Techniques[C].1998,135:325-335.
  • 9Rothaus O S.On Bent Functions[J].Journal of Combinatorial Theory:Series A,1976,20:300-305.
  • 10李世取,刘文芬,滕吉红.k阶拟Bent函数的性质及其应用[C]//谢仁宏.第7届全国青年通信学术会议论文集.北京:电子工业出版社,2001:939-943.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部