期刊文献+

RNN和Hopfield两网络中的优化解法的对比研究

Comparison Study of Optimization Solution between Random Neural Network and Hopfield Network
下载PDF
导出
摘要 基于一种动态随机神经网络 (DRNN)求解典型NP优化问题TSP的改进算法 ,在理论上对DRNN与连续的Hopfiled网络(CHNN)进行了对比研究 ,指出虽然两种网络均以能量函数表达TSP的最优路径 ,并通过训练反馈网络求得路径解 ,但由于两者所用激活函数和收敛条件不同 ,使得DRNN网络能够接受能量函数的小波动 ,从而跳出局部最小值达到全局最优 ;此外 ,DRNN与CHNN相比网络训练对参数变化不敏感 ,参数设置简单。最后 ,通过仿真实验对随机坐标十城市使用两种网络对比路径寻优能力 ,进一步验证理论分析的结论。 Based on the improved algorithm of Dynamic Random Neural Network (DRNN) on the typical NP problem - TSP, the comparison theoretical study of DRNN and Continue Hopfield Neural Network (CHNN) is analyzed. The two networks both use energy function as the expression of the final path solution by training the feedback networks, but the difference of working rules, convergence conditions makes DRNN accept small fluctuation of the energy function to escape the local minimum and reach the global one. On the other hand, compared with CHNN, the training parameters of DRNN are less sensitive and easier to settle. The theoretical conclusions are validated by experiments of two networks on the 10-city TSP coordinating randomly. The advantages and disadvantages of the two networks are discussed.
作者 王怡雯 丛爽
出处 《计算机仿真》 CSCD 2004年第11期161-163,175,176,共5页 Computer Simulation
基金 安徽省自然科学基金资助项目 ( 0 3 0 42 3 0 1)
关键词 动态随机神经网络 霍普菲尔德网络 组合优化问题 旅行商问题 Dynamical random neural network(DRNN) Hopfield network Combinatorial optimization Traveling salesman problem(TSP)
  • 相关文献

参考文献6

  • 1J J Hopfield, D W Tank. Neural Computation of Decision in Optimization Problems [J]. Biological Cybernetics, 1985, 52: 141-152.
  • 2E Gelenbe. Random neural networks with negative and positive signals and product form solution [J]. Neural Computation, 1989, 1(4): 502-511.
  • 3E Gelenbe. Learning in the recurrent random neural network, Neural Computation [J]. 1993, 5(1): 154-164.
  • 4E Gelenbe, V Koubi, F Perkergin. Dynamical random neural network approach to the traveling salesman problem [J]. Elektrik, 1994, 2(1): 1-10.
  • 5王怡雯,丛爽.用随机神经网络优化求解改进算法的研究[J].计算机工程与设计,2004,25(9):1454-1456. 被引量:2
  • 6王凌,郑大钟.TSP及其基于Hopfield网络优化的研究[J].控制与决策,1999,14(6):669-674. 被引量:27

二级参考文献7

  • 1Gelenbe E.Random neural networks with negative and positive signals and product form solution [J].Neural Computation, 1989,1(4): 502-511.
  • 2Gelenbe E, Koubi V, Perkergin F. Dynamical random neural network approach to the traveling salesman problem [J]. Turkish Journal of Electrical Engineering and Computer Sciences, 1994,2(1): 1-10.
  • 3Hopfield J J, Tank D W. Neural computation of decision in optimization problems [J].Biological Cybernetics, 1985,52: 141-152.
  • 4王怡雯 丛爽 窦秀明.用Boltzmann机求解典型NP优化问题TSP[A]..自动化理论、技术与应用[C].合肥:中国科学技术大学出版社,2003..
  • 5Zhou C S,Phys Rev E,1997年,55卷,3期,2580页
  • 6徐心和,东北大学学报,1990年,11卷,1期,68页
  • 7王凌,郑大钟.TSP问题次优化求解方法的比较[J].控制与决策,1998,13(1):79-82. 被引量:14

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部