期刊文献+

中国二八面体含铝蒙皂石矿物化学和晶体化学的特征 被引量:1

MINERAL AND CRYSTAL CHEMISTRY OF Al-CONTAINING DIOCTAHEDRAL SMECTITE FROM CHINA
下载PDF
导出
摘要 通过对我国64个二八面体含铝蒙皂石矿物化学及晶体化学数据的统计分析,研究了它们的矿物化学及晶体化学的基本特征,并得出八面体组分是影响蒙皂石矿物学及物理化学性质的主要因素。在此基础上,利用AlAl-AlFe—AlMg三角图划分了我国二八面体含铝蒙皂石的晶体化学类型,并对原分类图进行了模式化处理,使AlAl-AlFe—AlMg图更具实际意义。蒙皂石的阳离子交换容量与晶体化学模型有对应性,并受八面体三价离子Fe^(3+)及二价离子Mg^(2+)的控制。 Essential mineral and crystal chemistry data of 64 Al-containing dioctahedral smectitesamples from China are statistically analyzed, showing that the octahedral composition is amain factor affecting the mineralogical and physico-chemical properties of smectite. On thisbasis, the crystal chemical types of Al-containing dioctahedral smectite have been classifiedusing the AlAl-AlFe-AlMg triangular diagram, and the original classification diagram hasbeen modelled. This will make the AlAl--AlFe--AlMg triangular diagram be of more practi-cal significance. The cation exchange capacity of Al-containing dioctahedral smectite iscorrelated with its crystal chemical type, and is controlled by the trivalent cation Fe^(3+) andthe bivalent cation Mg^(2+).
出处 《矿物学报》 CAS CSCD 北大核心 1993年第4期293-302,共10页 Acta Mineralogica Sinica
关键词 蒙皂石 矿物化学 晶体化学 含铝 Al-containing dioctahedral smectite statisticaly characteristic crystal chemical type cation exchange capacity
  • 相关文献

参考文献7

二级参考文献8

  • 1匿名著者,粘土类土和岩石的强度与变形性能的本质,1985年
  • 2俞旭,现代海洋沉积矿物及其X射线衍射研究,1984年
  • 3苗春省,矿物学报,1983年,3卷,281页
  • 4袁慰顺,1983年
  • 5粘土矿物学,1981年
  • 6团体著者,硅酸盐物理化学,1980年
  • 7匿名著者,物理学常用数表,1979年
  • 8袁望治

共引文献10

同被引文献38

  • 1Sharp M, Parkes J, Cragg B, Fairchild I J, Lamb H, Tranter M. Widespread bacterial populations at glacier beds and their rela- tionship to rock weathering and carbon cycling[J].Geology, 1999,27:107-110.
  • 2Bousserrhine N, Gasser U G,Jeanroy E, Berthelin J. Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al- substituted goethites [J]. Geomicrobiology Journal, 1999, 16: 245-258.
  • 3Bottrell S H,Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J].Earth science Review,2006,75 : 59-83.
  • 4Gorbushina A A. Life on the rocks[J]. Environmental Microbi- ology, 2007,9 :1613-1631.
  • 5Wu L L, Jacobson A D, Hausner M. Characterization of ele- mental release during microbe-granite interactions at T = 28 degrees C[J]. Geochim. Cosmochim. Acta, 2008,72:1076 - 1095.
  • 6Balland C,Poszwa A, Leyval C, Mustin C. Dissolution rates of phyllosilicates as a function of bacterial metabolic diversity[J]. Geochim. Cosmochim. Acta, 2010,74 : 5478- 5493.
  • 7Lian B, Wang B, Pan M, Liu C Q, Teng H H. Microbial Release of Potassium from K-Bearing Minerals By Thermophilic Fun- gus Aspergillus fumigatus[J]. Geoehim. Cosmochim. Acta, 2008,72(1) :87-98.
  • 8Kostka J E, Haefele E, Viehweger R, Stucki J W. Respiration and dissolution of iron(III)containing clay minerals by bacte- ria[J]. Environmental Science & Technology, 1999,33 (18) : 3127-3133.
  • 9Patricia A M,Melania A V,Larry E H,JuIia E F,Amy F. En- hancement of Kaolinite Dissolution by an Aerobic Pseudo- monas mendocina Bacterium[J]. J. Geomicrobiology, 2001, 18:21-35.
  • 10Buesseler K O, Andrews J E, Pike S M, Charette M A. The effects of iron fertilization on carbon sequestration in the Southern Ocean[J]. Science,2004,304:414-417.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部