期刊文献+

城市高速公路交通的神经网络建模与控制 被引量:3

Urban Expressway Traffic Flow Modeling and Control Using Neural Networks
下载PDF
导出
摘要 从城市高速公路交通流的宏观、动态特性出发 ,分析了交通流控制中常用的宏观、动态、确定性模型 在此基础上 ,利用人工神经网络技术建立了城市高速公路的神经网络模型 ,并提出了入口匝道放行和路段速度相结合的多变量神经网络控制策略 利用该控制策略建立的自适应神经网络控制器 ,可以使高速公路上的交通密度维持在理想的密度值附近 .进一步分析可以得到 ,该控制器是一个状态和控制作用均可跟踪的伺服系统 .以杭州某高架高速公路为背景的仿真结果表明 :该控制器具有较强的鲁帮性 ,控制效果令人满意 . From the viewpoint of macro and dynamic character is tics of urban freeway traffic flow, a commonly used macroscopic, dynamic and det erministic traffic flow model for traffic control is developed. Furthermore, the neural network model for urban freeway traffic flows, and the urban freeway mul ti-variable neural control strategy with both the on-ramps control and the roa d speeds control are also presented simultaneously. The developed adaptive neura l controller is used to control the traffic density and force it to follow a des ired one. This control strategy is a servo system of which the states and the co ntrol effect can be followed. Finally computer simulation on Hangzhou urban free way shows that the controller is robust and the result is satisfactory.
出处 《信息与控制》 CSCD 北大核心 2004年第6期729-734,共6页 Information and Control
关键词 城市高速公路 交通流模型 入口匝道控制 神经网络 urban freeway traffic flow model on-ramp control n eural network
  • 相关文献

参考文献5

  • 1Papageorgiou M, Blosseville J M, Hadj-Salem H. Modeling and real-time control of traffic flow on the southern part of Boulevard peripherique in Paris, part I: modeling[J]. Transportation Research-A, 1990, 24(5):345~359.
  • 2Payne H J. Models of freeway traffic and control[A]. Proceedings of Mathematics Models and Public Systems[C]. San Diego: Simulation Councils Inc., 1971.51-61.
  • 3Karaaslan U, Varaiya P, Walrand J. Two proposals to improve freeway traffic flow[R]. California, USA: University of California, 1990.
  • 4Polycarpou M M, Ioannou P A. Modeling,identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks[A]. Proceedings of American Control Conference[C]. Boston, MA: 1992.36~40.
  • 5Ho F, Ioannou P. Traffic flow modeling and control using artificial neural networks[J]. IEEE Control Systems Magazine, 1996, 16(5): 16-27.

同被引文献32

  • 1李宝家,黄小原.高速公路交通的神经网络自适应控制[J].控制理论与应用,2004,21(2):226-230. 被引量:2
  • 2梁新荣,刘智勇,毛宗源.高速公路可变速度标志神经网络控制[J].计算机工程,2005,31(18):200-201. 被引量:2
  • 3Ran B, Leight S, Chang B. A microscopic simulation model for merging control on a dedicated-lane automated highway system[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(6): 369-388.
  • 4Alvarez L, Horowitz R, Toy C V. Multi-destination traffic flow control in automated highway systems[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(1): 1-28.
  • 5Girault A. A hybrid controller for autonomous vehicles driving on automated highways[J]. Transportation Research Part C: Emerging Technologies, 2004, 12(6): 421-452.
  • 6Rafael B A, Amir G A. Variable structure decentralized control and estimation for highway traffic systems[J]. J of Dynamic SYstems, Measurement, and Control, 2008, 130(4): 0410021-04100211.
  • 7Chien C C, Zhang Y, Ioannou P A. Traffic density control for automated highway systems[J]. Automatica, 1997, 33(7): 1273-1286.
  • 8Papageorgiou M, Blosseville J M, Habib H S. Macroscopic modelling of traffic flow on the Boulevard Peripherique in Pads[J]. Transportation Research Part B: Methodological, 1989, 23(1): 29-47.
  • 9Papageorgiou M. Some remarks on macroscopic traffic flow modelling[J]. Transportation Research Part A: Policy and Practice, 1998, 32(5): 323-329.
  • 10Wang Y B, Papageorgiou M, Messmer A, et al. An adaptive freeway traffic state estimator[J]. Automatica, 2009, 45(1): 10-24.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部