期刊文献+

一种基于模糊径向基函数神经网络的自学习控制器 被引量:3

A Self-learning Controller Based on Fuzzy Radial Basis Functi on Neural Networks
下载PDF
导出
摘要 提出了一种新型的基于模糊径向基函数 (RBF)的神经网络学习控制器 ,并应用于电液伺服系统 .由于RBF网络和模糊推理系统具有函数等价性 ,采用模糊经验值方法选取网络中心值和基函数数目 .与一般的神经网络自学习控制器不同 ,以系统动态误差作为网络输入量 ,RBF神经网络控制器学习的是整个系统的动态逆过程 ,因而控制性能明显提高 .对电液位置伺服系统的仿真和实验结果表明 。 A new learning controller based on fuzzy radial b as is function neural networks is proposed and used in electrohydraulic servo syste m. Due to the function equivalence between RBF neural networks and fuzzy inferen ce system, fuzzy experience method is adopted to select the centers and the numb er of basis function networks. Unlike common neural network learning controller, the dynamic errors are served as the network input. The RBF neural networks lea rn dynamic inverse process of the whole system, so the control performance is im proved obviously. The results of simulation and experiment on an electrohydrauli c position servo system show that this control strategy can improve control prec ision and adaptive ability effectively.
出处 《信息与控制》 CSCD 北大核心 2004年第6期758-761,共4页 Information and Control
基金 北京化工大学青年教师自然科学研究基金资助项目 (QN0 40 8)
关键词 径向基函数网络 神经网络学习控制 电液位置伺服系统 radial basis function(RBF) network neural network lea rning control electrohydraulic position servo system
  • 相关文献

参考文献3

  • 1Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks, 1991, 2(2): 302-309.
  • 2Hunt K J, Haas R, Murray-Smith R. Extending the function networks and fuzzy inference systems[J]. IEEE Transactions on Neural Networks, 1996, 7(3): 776-781.
  • 3Jin L, et al. Weight-decoupled Kalman filter learning algorithm of multilayer neural networks[M]. Saskatcheman: College of Engineering University of Saskatcheman, 1991.452-461.

同被引文献25

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部