期刊文献+

Reproducing Spaces and Localization Operators

Reproducing Spaces and Localization Operators
原文传递
导出
摘要 This paper, by using of windowed Fourier transform (WFT), gives a family of embedding operators , s.t. are reproducing subspaces (n = 0, Bargmann Space); and gives a reproducing kernel and an orthonormal basis (ONB) of T n L 2(R). Furthermore, it shows the orthogonal spaces decomposition of . Finally, by using the preceding results, it shows the eigenvalues and eigenfunctions of a class of localization operators associated with WFT, which extends the result of Daubechies in [1] and [6]. This paper, by using of windowed Fourier transform (WFT), gives a family of embedding operators , s.t. are reproducing subspaces (n = 0, Bargmann Space); and gives a reproducing kernel and an orthonormal basis (ONB) of T n L 2(R). Furthermore, it shows the orthogonal spaces decomposition of . Finally, by using the preceding results, it shows the eigenvalues and eigenfunctions of a class of localization operators associated with WFT, which extends the result of Daubechies in [1] and [6].
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第2期255-260,共6页 数学学报(英文版)
基金 Research supported by 973 Project G1999075105 and NNFS of China,Nos.90104004 and 69735020
关键词 Reproducing space Localization operator Bargmann space Windowed Fourier transform Reproducing space Localization operator Bargmann space Windowed Fourier transform
  • 相关文献

参考文献6

  • 1Daubechies. I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 17-51 (1992).
  • 2Shenoy, Ram G., Parks, Thomas, W.: The Weyl correspondence and time-frequency analysis. IEEE Trans.on Sio. Proc., 42(2), 318-331 (1994).
  • 3Wilcox, Calvin. H.: The Synthesis Problem for Radar Ambiguity Functions. In Radar and Sonar, Grunbaum, A., Blaud, M., eds., IMA Volume in Mathematics and its Application, Springer-Verlag, New York,229-260 (1991).
  • 4Wong, M: W.: Weyl Transforms, Springer-Verlag, New York, Berlin, 107-111 (1998).
  • 5Miller, W.: Topics in harmonic analysis with applications to radar and sonar. In Radar and Sonar, Grunbaum, A., Blaud, M., eds., IMA Volume in Mathematics and its Application, Springer-Verlag, New York,66-168 (1991).
  • 6Daubechies, L: Time-frequency localization operators: a geometric phase space approach. IEEE Trans.Inform. Theory, 34, 605-612 (1988).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部