期刊文献+

On Cycles Containing a Given Arc in Regular Multipartite Tournaments

On Cycles Containing a Given Arc in Regular Multipartite Tournaments
原文传递
导出
摘要 In this paper we prove that if T is a regular n-partite tournament with n ≥ 4, then each arc of T lies on a cycle whose vertices are from exactly k partite sets for k = 4, 5, . . . ,n. Our result, in a sense, generalizes a theorem due to Alspach. In this paper we prove that if T is a regular n-partite tournament with n ≥ 4, then each arc of T lies on a cycle whose vertices are from exactly k partite sets for k = 4, 5, . . . ,n. Our result, in a sense, generalizes a theorem due to Alspach.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第2期379-384,共6页 数学学报(英文版)
基金 supported by Chinese Postdoctoral Science Foundation National Natural Science Foundation of China(Grant Nos.60103021,10171062 and 19871040) Huazhong University of Science and Technology Foundation
关键词 Multipartite tournaments Cycles Multipartite tournaments Cycles
  • 相关文献

参考文献11

  • 1Bondy, J. A., Murty. U.S.: Graph Theory with Applications, MacMillan Press, London, 1976.
  • 2Moon. J. W.: On subtournaments of a tournament. Canad. Math. Bull., 9, 297-301 (1966).
  • 3Alspach, B.: Cycles of each length in regular tournaments. Canad. Math. Bull., 10, 283-286 (1967).
  • 4Goddard, W. D., Oellermann, O. R.: On the cycle structure of multipartite tournaments. Graph Theory Combinat. Appl., 1, 525-533 (1991).
  • 5Guo, Y., Volkmann, L.: Cycles in multipartite tournaments. J. Combin. Theory Ser. B, 62, 363-366(1994).
  • 6Guo, Y.: Outpaths in semicomplete multipartite digraphs. Discrete Appl. Math., 95, 273-277 (1999).
  • 7Gutin, G.: On cycles ill multipartite tournaments. J. Combin. Theory Set. B, 58, 319-321 (1993).
  • 8Yeo, A.: Diregular c-partite tournaments are vertex pancyclic when c ≥5. J. Graph Theory, 32, 137-152(1999).
  • 9Gutin, G.: Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey. J.Graph Theory, 19, 481-505 (1995).
  • 10Volkmann, L.: Cycles in multipartite tournaments: results and problems. Disrecte Math., 245(1-3), 19-53(2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部