摘要
Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X 1 : X 2) is an n×(p+q) known design matrix with rank(X) = r ≤ (p+q), and β = (β′ 1: β′2 )′ with β1 and β2 being p×1 and q×1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M 2 X 1β1under the model and its best linear unbiased estimators under the reduced linear models of are given, where M 2 = I -X 2 X 2 + . Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M 2 X 1β1 under the model and those under its reduced linear models are established. Lastly, we also study the connections between the model and its linear transformation model.
Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X 1 : X 2) is an n×(p+q) known design matrix with rank(X) = r ≤ (p+q), and β = (β′ 1: β′2 )′ with β1 and β2 being p×1 and q×1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M 2 X 1β1under the model and its best linear unbiased estimators under the reduced linear models of are given, where M 2 = I -X 2 X 2 + . Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M 2 X 1β1 under the model and those under its reduced linear models are established. Lastly, we also study the connections between the model and its linear transformation model.
基金
supported by the National Natural Science Foundation of China
Tian Yuan Special Foundation (No.10226024)
Postdoctoral Foundation of China and Lab.of Math.for Nonlinear Sciences at Fudan Universitysupported in part by The International Organizing Committee and The Local Organizing Committee at the University of Tampere for this Workshopsupported in part by an NSF grant of China