期刊文献+

BBM方程的孤立波解及其互相作用 被引量:13

Solitary Wave Solutions and Their Interaction for the BBM Equation
下载PDF
导出
摘要 本文给出Lagrange密度函数,从而用变分原理引出了BBM方程,解析地研究了该方程的孤立波解及其互相作用,并证明了2—孤立波互相作用的近似解具孤立子性质。 In the present paper,the Lagrangian density function,from which the BBM equationcan be derived by using the variational principle, is given. The solitary wave solutionsand their interaction for the BBM equation are studied analytically. It is shown that theapproximate solution of 2-solitary wave interaction possesses soliton property.
作者 王明亮
机构地区 兰州大学数学系
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 1993年第3期7-13,共7页 Journal of Lanzhou University(Natural Sciences)
基金 甘肃省自然科学基金
关键词 孤立波 孤立子 变分原理 BBM方程 solitary waves solitons variational principles Lagrangian density function BBM equation
  • 相关文献

同被引文献58

  • 1Liu Xiqiang Jiang SongGraduate School, China Academy of Engineering and Physics, P.O. Box 2101, Beijing 100088,Dept. of Math., Liaocheng Teachers Univ., Shandong 252000. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beiji.EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(4):377-380. 被引量:8
  • 2Benjamin T B,Bona J L,Mahony J J.Model Equations for Long Waves in Nonlinear Dispersive Systems[J].Philos Trans Roy Soc London Ser A,1972,272:47-78.
  • 3Wang M L.Exact Solutions for a Compound KdV-Burgers Equation[J].Phys. Lett. A,1996,213:279-287.
  • 4Zhou Y B,Wang M L,Wang Y M.Periodic Wave Solutions to a Coupled KdV Equations with Variable Coefficients[J].Phys.Lett.A,2003,308:31-36.
  • 5Wang M L, Zhou Y B.The Periodic Wave Solutions for the Klein-Gordon-Schrdinger Equations[J].Phys.Lett. A,2003,318:84-92.
  • 6Benjamin T B, Bone J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems[J]. Philos Trans Roy Soc London, 1972, 272A: 47-78
  • 7Chuntao Y. The sech^2 solitary wave and its equivalent transformation, Expoiting symmetry in Applied and Numerical analysis[A]. 22-nd AMS-SIAM Summer seminar[C]. (Fort Collins 1992)
  • 8Chuntao Y. Regularized long wave equation and inverse scattering transform[J]. J Math Phys, 1993, 34(6): 2618-2630
  • 9Liu X Q, Jiang S. New Sowtion of the 3+1 dimensional Jimbo-Miwa equation[J]. Applied Math and Computation,2004, 158:177-184
  • 10刘式适 刘式达.物理中的非线性方程[M].北京:北京大学出版社,2000..

引证文献13

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部