期刊文献+

计算积和式的分层Monte-Carlo方法 被引量:2

MULTILEVEL MONTE-CARLO METHODS FOR COMPUTING THE PERMANENT OF MATRICES
原文传递
导出
摘要 It is proved that the computation of permanent is #P-hard even for 0-1 matrix.Hence approximate algorithms are the right choice. Permanent computation for general matrix is discussed in this paper. Three Monte-Carlo methods for estimating the permanent of general matrix are presented. Numerical computations and the statistical analysis on the numerical results show t.he efficiency of our methods. It is proved that the computation of permanent is #P-hard even for 0-1 matrix. Hence approximate algorithms are the right choice. Permanent computation for general matrix is discussed in this paper. Three Monte-Carlo methods for estimating the permanent of general matrix are presented. Numerical computations and the statistical analysis on the numerical results show the efficiency of our methods.
出处 《数值计算与计算机应用》 CSCD 北大核心 2004年第3期174-182,共9页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(G10228101) 国家重点基础研究基金(G1998020306)资助.
关键词 积和式 分层Monte—Carlo方法 矩阵 数值试验 样本 permanent, Monte-Carlo method, analysis of variance
  • 相关文献

参考文献10

  • 1A.L.Cauchy, Mémoire sur les functions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu'elles renferment, J. Ec. Polyt.10(1812), Cah. 17, 29-112, Oeuvres(2)i.
  • 2T.Muir, On a class of permanent symmetric functions, Proc. Roy. Soc. Edinburgh, 11 (1882),409-418.
  • 3L.E.Rasmussen, Approximating the permanent: a simple approach, Random Structures and Algorithms, 5 (1994), 349-361.
  • 4H.Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14, the Mathematical Association of America, (1963).
  • 5L.Valiant, The complexity of computing the permanent, Theoretical Computer Science, 8 (1979),189-201.
  • 6M.Jerrum, A.Sinclair, Approximating the permanent, SIAM J. Computing, 18 (1989), 1149-1178.
  • 7N.Karmarkar, R.M.Karp, R.Lipton, L.Lovasz, M.Luby, A Monte-Carlo algorithm for estimating the permanent, SIAM J. Computing, 22 (1993), 284-293.
  • 8C.Kenyon, D.Randall, A.Sinclair, Approximating the number of monomer dimer coverings of a lattice, J. Stat. Phys., 83 (1996), 637-659.
  • 9T.Y.Li, Numerical solution of multivariate polynomial systems by homotopy continuation method,ACTA Numerica, (1997), 399-436.
  • 10H.Minc, Permanents, encyclopedia of mathematics and its applications 6, Addison-Wesley Publishing Company, (1982).

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部