期刊文献+

基于粒子群优化算法的结构模型修改 被引量:18

Structural Model Updating Based on Particle Swarm Optimization
下载PDF
导出
摘要 结构模型修改已经演化为一个多学科的研究课题 ,在最优化框架内 ,应用了国际上最近提出的粒子群优化算法 ,该算法具有全局搜索能力并且不需要目标函数的解析表达式。对于一实际钢结构 ,利用部分和全部测量得到的模态数据进行了模型修改的实验研究 ,并与基于灵敏度分析、神经网络和遗传算法的模型修改方法进行了对比 ,以修改后模型计算出的模态数据与实验测得的模态数据的相似度来衡量模型修改的准确性。结果表明 ,在多数情况下 ,所提出的模型修改方法得到了最好的修改结果 ,因此 ,应用粒子群优化算法进行结构模型修改是可行的。 Structural model updating was evolved into a multidisciplinary research subject, and the problem is solved in the framework of optimization. Particle swarm optimization (PSO) algorithm is applied, which is proposed by some mechanisms in sociology, psychology and ecology and has distinguished global search capability and does not need explicit expression of objective functions. For a real steel structure, some model updating experiments are carried out by using partial and complete experimentally measured modal data, respectively. The updated results are compared with those of some methods based on sensitivity analysis, neural network, and genetic algorithm. Precision of model updating is measured by the similarity between experimentally measured modal data and predicted modal data with updated models. Comparisons indicate that the model updating method gives the best results in most cases, so updating structure model with PSO is valid.
出处 《振动工程学报》 EI CSCD 北大核心 2004年第3期350-353,共4页 Journal of Vibration Engineering
关键词 结构动力学 最优化算法 结构模型修改 粒子群 Modal analysis Optimization Structural design
  • 相关文献

参考文献8

  • 1朱宏平,徐斌,黄玉盈.结构动力模型修正方法的比较研究及评估[J].力学进展,2002,32(4):513-525. 被引量:48
  • 2Kennedy J,Eberhart R C. Particle swarm optimization.In: Proc. IEEE Int. Conf. Neural Networks, Perth, Australia,1995:1 942-1 948
  • 3Eberhart R C,Kennedy J. A new optimizer using particle swarm theory. In: Proc. Int. Symposium Micro Machine and Human Science ,Japan, 1995: 39-43
  • 4Srinivasan D,Wee H L,Ruey L C. Traffic incident detection using particle swarm optimization. In:Proc. Int.Swarm Intelligence Symposium, 2003: 144-151
  • 5Higashi N,Iba H. Particle swarm optimization with gaussian mutation. In:Proc. Int. Swarm Intelligence Symposium, 2003: 72-79
  • 6Venter G. Particle Swarm Optimization. AIAA-2002-1235,2002
  • 7Shi Y,Eberhart R C. Empirical study of particle swarm optimization. In :Proc. Congress on Evolutionary Computation,1999:1 945-1950
  • 8Hu X, Eberhart R. Solving constrained nonlinear optimization problems with particle swarm optimization. 6th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, USA, 2002

二级参考文献64

  • 1向锦武,周传荣,张阿舟.基于建模误差位置识别的有限元模型修正方法[J].振动工程学报,1997,10(1):1-7. 被引量:16
  • 2徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12. 被引量:45
  • 3Bathe K J. Finite Element Procedures in Engineering Analysis. New Jersey: Prentice-Hall, Englewood Cliffes,1982. 1~5
  • 4Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Dordrecht, Boston: Klumer Academic Publishers, 1995. 1~6
  • 5Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound & Vibration, 1993, 167(3): 347~375
  • 6Zhang Q W, Chang T Y P, Chang C C. Finite element model updating for the Kap Shui Mun cable-stayed bridge. Journal of Bridge Engineering, ASCE, 2000, 6(4): 285~293
  • 7Oreta A W C, Tanabe T A. Element identification of member properties of framed structures. Journal of Structural Engineering, ASCE, 1994, 120(4): 1961~1976
  • 8Zimmerman D C, Widengren M. Correcting finite element modes using a symmetric eigenstructure assignment technique. AIAA J, 1990, 28(9): 1670~1676
  • 9Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 1998, 30:91~305
  • 10Chester M. Neural Networks; A Tutorial. New Jersey: Prentice-Hall Inc, 1993

共引文献47

同被引文献143

引证文献18

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部