期刊文献+

ON MAXIMAL MATCHINGS OF CONNECTED GRAPHS

ON MAXIMAL MATCHINGS OF CONNECTED GRAPHS
下载PDF
导出
摘要 Let I with |I| = k be a matching of a graph G (briefly, I is called a k-matching). If I is not a proper subset of any other matching of G, then I is a maximal k-matching and m(gk, G) is used to denote the number of maximal k-matchings of G. Let gk be a k-matching of G, if there exists a subset {e1, e2,…, ei} of E(G) \ gk, i (?)1, such that (1) for any j ∈ {1, 2,…,i}, gk + {ej} is a (k + l)-matching of G; (2) for any f ∈ E(G) \ (gk ∪ {e1,e2,…,ei}), gk + {f} is not a matching of G; then gk, is called an i wings k-matching of G and mi(gk,G) is used to denote the number of i wings k-matchings of G. In this paper, it is proved that both mi(gk,G) and m(gk,G) are edge reconstructible for every connected graph G, and as a corollary, it is shown that the matching polynomial is edge reconstructible. <正> Let I with |I| = k be a matching of a graph G (briefly, I is called a k-matching). If I is not a proper subset of any other matching of G, then I is a maximal k-matching and m(gk, G) is used to denote the number of maximal k-matchings of G. Let gk be a k-matching of G, if there exists a subset {e1, e2,…, ei} of E(G) \ gk, i (?)1, such that (1) for any j ∈ {1, 2,…,i}, gk + {ej} is a (k + l)-matching of G; (2) for any f ∈ E(G) \ (gk ∪ {e1,e2,…,ei}), gk + {f} is not a matching of G; then gk, is called an i wings k-matching of G and mi(gk,G) is used to denote the number of i wings k-matchings of G. In this paper, it is proved that both mi(gk,G) and m(gk,G) are edge reconstructible for every connected graph G, and as a corollary, it is shown that the matching polynomial is edge reconstructible.
作者 许宝刚
出处 《Acta Mathematica Scientia》 SCIE CSCD 2004年第4期603-607,共5页 数学物理学报(B辑英文版)
基金 Research supported partially by NSFC (10001035) and(10371055)
关键词 WINGS MATCHING RECONSTRUCTION wings matching reconstruction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部