期刊文献+

基于像素概率模型的背景分割算法 被引量:2

Segmenting Background Based on Probability Models of Pixel
下载PDF
导出
摘要 背景分割的目的是提取出图像中感兴趣的前景区域 ,本文提出了一种基于像素概率模型的背景分割算法。该算法利用高斯混合模型描述每一被观察像素的近期色彩历史 ,根据分类原则确定当前帧中每一像素的类别 ,利用在线EM算法更新模型参数。实验结果表明 ,本文提出的算法可以鲁棒地分割出动态场景中的前景和背景。 The goal of background segmentation was to extract interesting foreground regions in images. An algorithm of segmenting background based on probability models of pixel was proposed in this paper. Firstly, adaptive pixel models were modeled to describe the recent history of color at each observed pixel. Then each pixel was classified as background or foreground according to principle of classification. Finally, parameters of models were updated using on-line EM algorithm. Experimental results showed that our approach was suitable for segmenting foreground from background in dynamic environments.
出处 《电子测量与仪器学报》 CSCD 2004年第3期18-23,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金 (编号 60 1 0 3 0 1 6) 浙江省自然科学基金 (编号 60 1 0 1 9) 浙江省自然科学基金青年人才培养项目 (编号RC0 2 0 64)资助项目
关键词 分割算法 像素 概率模型 场景 EM算法 高斯混合模型 鲁棒 Probability models of pixel, background segmenting, Gaussian distribution, EM algorithm.
  • 相关文献

参考文献6

  • 1Blimes, J. A. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report TR-97-021, International Computer Science Institute (ICSI) and Computer Science Division, Dept.
  • 2Neal R. M., Hinton G. E.. A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants. To appear in M. I. Jordan (editor), Learning in Graphical Models, Kluwer Academic Press, 1998, pp: 355-368.
  • 3C. Ridder, O. Munkelt, and H. Kirchner. Adaptive Background Estimation and Foreground Detection Using Kalman-filtering. In Proc. International Conference on Recent Advances in Mechatronics, pp: 193-199, 1995.
  • 4C.Wren, A. Azarbayejani, T.Darrell, and A. Pentland. Pfinder: Real-time Tracking of the Human Body. IEEE Transactions on PAMI, 19(7), pp: 780-785, 1997.
  • 5Stauffer C and Grimson W. Adaptive Background Mixture Models for Real-time Tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2, pp: 246-252.
  • 6Magee, D. Tracking Multiple Vehicles Using Foreground, Background and Motion Models. In Proc. ECCV Workshop on Statistical Methods in Video Processing, pp: 7-12, 2002, Copenhagen.

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部