期刊文献+

潮流中污染物离散的理论分析与应用 被引量:4

THE THEORETICAL ANALYSIS OF POLLUTANT DISPERSION IN TIDAL FLOW AND ITS APPLICATION
下载PDF
导出
摘要 利用浓度矩法推导了纵向流速分布可分离为空间函数与时间函数相乘型式的二维潮汐流动中剪切离散系数的表达式,获得了对数流速分布下正弦式潮汐流离散系数随时间的变化过程,对离散与潮流特征的关系以及负离散问题进行了分析。最后将理论分析成果应用于珠江黄埔河段,获得了与实测资料相符的结果。 In this paper a formula is derived for shear dispersion coefficients of two dimensional tidal flow, the velocity distributions of which can be expressed by the product of a space-dependent function and a time-dependent function, by the method of concen-trational moment. The process of dispersion coefficients versus time is calculated in case of sine tidal flow with logarithmic velocity distribution. The relation of dispersion and features of tidal flow, and the phenomenon of negative dispersion are analyzed. Finaly, the theoretical formula is applied to calculate the dispersion coefficients of Huangpu reach in Zhujiang river, the calculating results are in good agreement with field measurements.
出处 《力学学报》 EI CSCD 北大核心 1993年第4期394-403,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金
关键词 离散 浓度矩 潮流 污染物 tidal flow, dispersion, concentrational moment, Zhujiang river
  • 相关文献

参考文献3

  • 1卞振举,水科学青年学术论文集.1,1990年
  • 2卞振举,1989年
  • 3郭敦仁,数学物理方法,1979年

同被引文献23

  • 1匡国瑞,苏志清,陈伯海.埕北海域污染扩散参量的估算——潮流水平扩散系数[J].海洋环境科学,1993,12(2):34-39. 被引量:1
  • 2李玉梁,卞振举,余常昭.潮汐流动平均离散的分析与计算[J].中国环境科学,1994,14(4):252-258. 被引量:3
  • 3Fischer H B, Imberger J,List E J, et al. Mixing in Inland and Coastal Waters[M] .New York: Academic Press, 1979.
  • 4Elder J W. The dispersion of a marked fluid in turbulent shear flow[ J]. J Fluid Mech, 1959,5(4) : 544-560.
  • 5Fischer H B. Discussion of 'simple method for predicting dispersion in stream' by R S McQuivey and T N Keefer[J]. J Environ Eng Div ASCE, 1975,101 ( 3 ) : 453-455.
  • 6Seo I W, Cheong T S. Predicting longitudinal dispersion coefficient in natural streams[ J]. J Hydmul Eng, 1998,124( 1) : 25-32.
  • 7Kashefipour S M, Falconer R A. Longitudinal dispersion coefficients in natural channels[ J]. Water Research, 2002,36(6) : 1596-1608.
  • 8Heemink A W, Mouthaan E E A, Roest M R T, et al. Inverse 3D shallow water flow modelling of the continental shelf[ J ]. Cantinental Shelf Research, 2002,22 ( 3 ) : 465-484.
  • 9Dehghan M, Tatari M. Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions[ J]. Mathematical and Computer Modelling,2006,44( 11/ 12) : 1160-1158.
  • 10Li G S, Cheng J, Yao D, et al. One-dimensional equilibrium model and source parameter determination for soil-column experiment[ J ]. Applied Mathematics and Computation, 2007, 190( 2 ):1365- 1374.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部