Non-Noether symmetries and conserved quantities of the Lagrange mechano-electrical systems
被引量:1
参考文献24
-
1Noether A E 1918 Nachr. Akad. Wiss. Gottingen Math.Phys. KI,II 235.
-
2Djukic Dj D and Vujanovic B 1975 Acta Mech. 23 17.
-
3Li Z P 1981 Acta Phys. Sin. 30 1659 (in Chinese).
-
4Liu D 1991 Chin. Sci. Series A 34 419.
-
5Mei F X 1993 Chin. Sci. Series A 36 1456.
-
6Fu J L and Chen L Q 2004 Mech. Res. Commun. 31 9.
-
7Mircea Crasmareanu 2000 J. Non-Linear Mech. 35 947.
-
8Luo S K, Guo Y X and Mei F X 2004 Acta Phys. Sin. 531271 (in Chinese).
-
9Zhang Y and Mei F X 2004 Acta Phys. Sin. 53 2419 (in Chinese).
-
10Lutzky M 1979 Phys. Left. A 75 8.
同被引文献19
-
1刘端.NOETHER’S THEOREM AND ITS INVERSE OF NONHOLONOMIC NONCONSERVATIVE DYNAMICAL SYSTEMS[J].Science China Mathematics,1991,34(4):419-429. 被引量:17
-
2傅景礼,陈立群,谢凤萍.Lie symmetries and non-Noether conserved quantities for Hamiltonian canonical equations[J].Chinese Physics B,2004,13(10):1611-1614. 被引量:3
-
3赵跃宇,梅凤翔.关于力学系统的对称性与不变量[J].力学进展,1993,23(3):360-372. 被引量:81
-
4郑世旺,傅景礼,李显辉.机电动力系统的动量依赖对称性和非Noether守恒量[J].物理学报,2005,54(12):5511-5516. 被引量:15
-
5郑世旺,贾利群,余宏生.Mei symmetry of Tzénoff equations of holonomic system[J].Chinese Physics B,2006,15(7):1399-1402. 被引量:25
-
6郑世旺,解加芳,贾利群.Symmetry and Conserved Quantity of Tzénoff Equations for Holonomic Systems with Redundant Coordinates[J].Chinese Physics Letters,2006,23(11):2924-2927. 被引量:11
-
7郑世旺,贾利群.非完整系统Tzénoff方程的Mei对称性和守恒量[J].物理学报,2007,56(2):661-665. 被引量:16
-
8梅凤翔,吴润衡,张永发.非Четаев型非完整系统的Lie对称性与守恒量[J].力学学报,1998,30(4):468-474. 被引量:44
-
9梅凤翔.变质量完整力学系统的Lie对称与守恒量[J].应用数学和力学,1999,20(6):592-596. 被引量:19
-
10乔永芬.广义力学系统的Lie对称性定理及其逆定理[J].东北农业大学学报,2000,31(3):275-279. 被引量:9
-
1罗绍凯.FORM INVARIANCE AND NOETHER SYMMETRICAL CONSERVED QUANTITY OF RELATIVISTIC BIRKHOFFIAN SYSTEMS[J].Applied Mathematics and Mechanics(English Edition),2003,24(4):468-478.
-
2傅景礼,陈本永,谢凤萍.Noether symmetries of discrete mechanico-electrical systems[J].Chinese Physics B,2008,17(12):4354-4360. 被引量:3
-
3LUO Shao-Kai.Form Invariance and Noether Symmetries of Rotational Relativistic Birkhoff Systems[J].Communications in Theoretical Physics,2002(9):257-260. 被引量:2
-
4刘翠梅,吴润衡,傅景礼.Lie symmetry algebra of one-dimensional nonconservative dynamical systems[J].Chinese Physics B,2007,16(9):2665-2670. 被引量:1
-
5梅凤翔,郑改华.ON THE NOETHER SYMMETRY AND LIE SYMMETRY OF MECHANICAL SYSTEMS[J].Acta Mechanica Sinica,2002,18(4):414-419. 被引量:1
-
6宋传静,张毅.Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model[J].Transactions of Nanjing University of Aeronautics and Astronautics,2015,32(4):421-427. 被引量:2
-
7罗绍凯,陈向炜,等.Theory of symmetry for a rotational relativistic Birkhoff system[J].Chinese Physics B,2002,11(5):429-436. 被引量:3
-
8乔永芬,李仁杰,赵淑红.Non-Noether symmetrical conserved quantity for nonholonomic Vacco dynamical systems with variable mass[J].Chinese Physics B,2004,13(11):1790-1795. 被引量:2
-
9B.Muatjetjeja,C.M.Khalique.EMDEN-FOWLER TYPE SYSTEM:NOETHER SYMMETRIES AND FIRST INTEGRALS[J].Acta Mathematica Scientia,2012,32(5):1959-1966.
-
10傅景礼,王显军,谢凤萍.Conserved Quantities and Conformal Mechanico-Electrical Systems[J].Chinese Physics Letters,2008,25(7):2413-2416. 被引量:14
;