期刊文献+

反应扩散系统中时空斑图研究(英文) 被引量:1

Spatiotemproal pattern formation in a reaction-diffusion system
下载PDF
导出
摘要 时空斑图广泛地存在于反应扩散系统中,在延展的布鲁塞尔振子模型中,一维的时空斑图已经被研究过。本文中,我们对布鲁塞尔振子模型进行线性稳定性分析,模拟出两维的时空斑图,进一步阐明斑图形成的机制,形成斑图的机制是由于霍普夫失稳、短波失稳和图灵失稳以及它们之间的相互作用。当系统处于非平衡状态下,布鲁塞尔振子模型可以得到有序的时空斑图。 Spatiotemporal pattern formations are often found in reaction-diffusion systems. One-dimension patterns have been obtained in the extended Brusselator model. In this paper, linear stability analysis is applied to the Brusselator model, a series of time-space pattern are obtained in two-dimension space by numerical simulations. Homogeneous bulk oscillations are unstable when systems are far away bifurcation point. We explain that some patterns are formed because of instabilities and interaction between instabilities. We further point out that the Brusselator model is a perfect model unraveling dissipative structure and the mechanism of patterns.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2004年第4期695-699,共5页 Journal of Atomic and Molecular Physics
基金 NaturalScienceFoundationofChina(GrantNo.10174019)NaturalScienceFoundationofHenanEducationalCommittee(GrantNo.2001-89and2003140028).
关键词 BRUSSELATOR模型 线性稳定性分析 <Keyword>The Brusselator model Linear stability analysis
  • 相关文献

参考文献14

  • 1Lu Qun Zhou and Qi Quyang. Spiral instability in a reaction-diffusion system [J]. J. Phys. Chem., 2001,A105:112- 118.
  • 2Lu Qun Zhou and Qi Quyang. Experimental studies on long-wavelength instability and spiral breakup in a reaction-diffusion system [J]. Phys. Rev. Lett. ,2000,85:1 650.
  • 3Mads Ipsen, Lorenz Kramer, Preben Grae Sorensen.Amplitude equations for description of chemical reactiondiffusion systems [J]. Physics Report,2000,337:193-235.
  • 4Vincent Hakim and Alain Karma. Theory of spiral dynamics in weakly excitable media: Asymptotic reduction to a kinematics model and applications [J].Phys. Rev. ,1999,E60:5 073.
  • 5Stephen L. Judd, Mary Silber. Simple and superlattice Turing patterns in reaction-diffusion: bifurcation,bistability, and parameter collapse [J]. Physics, D136:45-65.
  • 6Mary Silber, Michael R. E. Proctor. Nonlinear between small and large Hexagonal patterns[J]. Phys. Rev.Lett., 1998,81:2 450.
  • 7Igal Berenstein, LingFa Yang, Milos Dolink, Anatol M.Zhabotinsky, and Ivring R. Epstein. Superlattice Turing structures in a photosensitive reaction-diffusion system [J]. Phys. Rev. Lett. ,2003,91:058 302.
  • 8Vladimir K. Vanag, LingFa Yang, Milos Dolink, Anatol M. Zhabotinsky, and Ivring R. Epstein. Oscillatory clusters patterns in a homogeneous chemical system with global feedback [J]. Nature, 2000,406: 389.
  • 9LingFa Yang, Milos Dolink, Anatol M. Zhabotinsky,and Ivring R. Epstein. Oscillatory clusters in a model of the photosensitive Belousov-Zhabotinsky reaction system with feedback [J]. Phys. Rev. ,2000,E62:6 414.
  • 10Vladimir K. Vanag and Ivring R. Epstein. Packet waves in a reaction-diffusion system [J]. Phys. Rev. Lett.,2002,88: 088303 - 1.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部