摘要
探讨了一个有如下特征的排队系统 ,系统的到达间隔序列 {τm}及服务过程 {vm}均为相互独立但不一定同分布的随机变量序列 ,每个τn及每个vn 的分布均与系统的瞬时状态有关。此系统是经典的GI/G/ 1排队系统的拓广 ,利用补充变量技术 ,可以得到一个马尔可夫骨架过程 ,借助马尔可夫骨架过程理论 。
Studies a queueing system wherein the interarrival times τ_m(m=1,2,…) are mutually independent but not have to be identically distributed random variables, and so are the service times v_n(n=1,2,…). Both the distribution of every τ_m and the distribution of every v_n depend on the transient state of the system. Clearly, the queueing system is generalization of GI/G/l queue. Using supplementary variable technique in stochastic models, a multi-dimensional Markov skeleton process which includes the transient queue length of the queue mentioned here as a component is constructed. Then, by means of the theory of Markov skeleton processes, integral representation of the transient distribution of the queue length of the above queue is obtained.
出处
《铁道科学与工程学报》
CAS
CSCD
北大核心
2004年第2期107-110,共4页
Journal of Railway Science and Engineering
基金
国家自然科学基金资助项目 ( 10 1710 0 9)
高校博士点基金 ( 2 0 0 10 5 3 3 0 0 1)
"985行动计划"
"2 11工程"资助项目