期刊文献+

关于丢番图方程P^(2z)-P^zD^m+D^(2m)=X^2(I) 被引量:4

On the Diophantine Equation P^(2z)-P^zD^m+D^(2m)=X^2(I)
下载PDF
导出
摘要 设P为素数,P鄹D>1,完全解决丢番图方程A:P2z-PzDm+D2=X2。得到如下结论:(Ⅰ)若P=2,则方程(A)除D=3仅有非负整数解26-23·3+32=72和D=3·22k-4+2k-1-1(k≥3)仅有非负整数解22k-2k·(3·22k-4+2k-1-1)+(3·22k-4+2k-1-1)2=(3·22k-4+1)2以及D=22k-4+2k-1-3(k≥3)仅有非负整数解22k-2k·(22k-4+2k-1-3)+(22k-4+2k-1-3)2=(22k-4+3)2之外,无其他非负整数解。(Ⅱ)若P=3,则方程(A)除D=32k+1+2·3k-14(k≥1)仅有非负整数解32k-3k·32k+1+2·3k-14+(32k+1+2·3k-14)2=32k+1+14 2之外,无其他非负整数解。(Ⅲ)若P>3为奇素数熏则方程(A)除D=3P2k+2Pk-34(k≥1)仅有非负整数解P2k-Pk·P2k+2Pk-34+(P2k+2Pk-34)2=3P2k+14 2和D=P2k+2Pk-34(k≥1)仅有非负整数解P2k-Pk·P2k+2Pk-3+(P2k+2Pk-3)2=P2k+3 2之外,无其他非负整数解。 Let P is a odd prime,P D>1.We have already sovled the diophantine equation(A):P2z-PzDm+D2=X2.We have:(Ⅰ)If P=2, then equation(A)has not other nonnegative integral solution except when D=3 equation (A) only has nonnegative integral solution 26-23·3+32=72and when D=3·22k-4+2k-1-1(k≥3) equation (A) only has nonnegative integral solution 22k-2k·(3·22k-4+2k-1-1)+(3·22k-4+2k-1-1)2=(3·22k-4+1)2 and when D=22k-4+2k-1-3(k≥3) equation (A) only has nonnegative integral solution 22k-2k·(22k-4+2k-1-3)+(22k-4+2k-1-3)2=(22k-4+3)2.(Ⅱ)If P=3,then equation(A)has not other nonnegative integral solution except when D=(k≥1) equation (A) only has nonnegative integral solution 32k-3k·++()2= .(Ⅲ)If P>3,P is a odd prime, then equation(A)has not other nonnegative integral solution.except when D=(k≥1)equation only has nonnegative integral solution P2k-Pk·++( ) = and when D= (k≥1)equation only has nonnegative integral solution P2k-Pk· +( )2= .
作者 佟瑞洲
出处 《沈阳农业大学学报》 CAS CSCD 2004年第3期283-285,共3页 Journal of Shenyang Agricultural University
关键词 丢番图方程 素数 整数 非负整数解 diophantine equatinn odd prime ninnegative integral solution
  • 相关文献

参考文献1

  • 1V A DEM'JANENKO.On jesmanowicz' problem for pythagorean numbers(Russian)[J].Izv Vyss Ucebn Zaved Matematika,1965,48(5):52-56.

同被引文献12

  • 1佟瑞洲.一个丢番图方程的求解[J].沈阳师范大学学报(自然科学版),2005,23(2):133-136. 被引量:4
  • 2陈景润.关于Jesmanowicz猜想[J].四川大学学报:自然科学版,1962,(2):19-25.
  • 3佟瑞洲.初等数论与丢番图方程[M].延吉:延边大学出版社,1993.17-23.
  • 4曹珍富.关于丢番图方程x^P-y^P=DZ^2.东北数学,1986,2(2):219-227.
  • 5Birkhoff G D, Vandiver H S. On the integral divisors of a"-b" [J]. Ann of Math, 1904, (5) : 173-180.
  • 6Ribet K. On the equation ap + 2^nb^p + c^p = 0 [J].Acta Arith, 1997,79(1) :7-16.
  • 7Darrnon H, Merel L. Winding quotients and some variants of Fermat's last theorem[J]. Reine Angew Math, 1997,490 : 81-100.
  • 8Mihailescu P. A class umber free criterion for Catalan's conjecture[J]. Number Theory, 2003,99(2) :225-231.
  • 9BEGEAUD Y, SHOREY T N. On the number of solutions of the generalized Ramanujan-Nagell equation[J]. J Reine Angew Math, 2001,539 : 55-74.
  • 10乐茂华.关于二元二次原型表整数Ⅱ:Diophantus 方程 D_1x^2-D_2y^2=δk^2[J].铁道科学与工程学报,1989(2):6-18. 被引量:5

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部