期刊文献+

植物抗病基因同源序列(RGA)研究进展 被引量:25

Research Advance of Resistance Gene Analogs in Plant
下载PDF
导出
摘要 目前已克隆了48个植物抗病(R)基因,其表达产物在不同的物种具有典型的保守结构区域,按其序列的同源性可以将其归为NBS-LRR、eLRR、LRR-STK等几个超家族。根据这些保守序列设计合适的引物进行PCR扩增,即得到抗病基因同源序列(RGA)。对RGA与R基因关系的分析表明,RGA不仅在抗病基因定位和抗病基因系统进化研究中有重要作用,而且有可能为克隆R基因提供一条崭新而又便捷的途径。 Using either map-based cloning or transposon tagging, up to 48 resistance genes (R genes) have been isolated from different plant species. Molecular characterization of these genes uncovered common sequence motifs, even though they confer resistance to a wide spectrum of pathogens. These genes encode proteins that can be grouped into several superfamilies, NBS-LRR, eLRR, LRR-STK and so on, based on the conserved protein domains. PCR was performed with the degenerate primers based on these conserved domains, then the resistance gene analogs (RGA) was obtained. This review tries to analyze the relationships between the RGA and R genes, and summarize the important functions of RGA in mapping R genes and the evolution of R genes. It also believes that RGA can be useful as candidate genes to detect and eventually isolate numerous R genes in agronomically valuable plants.
出处 《分子植物育种》 CAS CSCD 2004年第6期853-860,共8页 Molecular Plant Breeding
关键词 植物 抗病基因 同源序列 R基因 基因定位 系统进化 RGA, NBS, LRR, STK, Molecular marker
  • 相关文献

参考文献62

  • 1[1]Aarts M.G.M., te Lintel Hekkert B., Holub E.B., Beynon J.L.,Stiekema W.J., and Pereira A., 1998, Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana, Mol. Plant Microbe Interact., 11 (4): 251-258
  • 2[2]Alber T., 1992, Structure of the leucine zipper, Curr. Opin.Genet., 2 (2): 205-210
  • 3[3]Anderson P.A., Lawrence G.J., Morrish B.C., Ayliffe M.A.,Finnegan E.J., and Ellis J.G., 1997, Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region, Plant Cell,9 (4): 641-651
  • 4[4]Bent A.F., 1996, Plant disease resistance genes: function meets structure, Plant Cell, 8 (10): 1757-1771
  • 5[5]Boyer J.S. 1982, Plant productivity and environment, Science,218:443-448
  • 6[6]Buschges R., Hollricher K., Panstruga R., Simons G., Wolter M.,Frijters A., van Daelen R., van der Lee T., Diergaarde P.,Groenendijk J., Topsch S., Vos P., Salamini F., and Schulze-Lefert P., 1997, The barley Mlo gene: a novel control element of plant pathogen resistance, Cell, 88 (5):695-705
  • 7[7]Byrne P.F., McMullen M.D., Snook M.E., Musket T.A., Theuri J.M., Widstrom N.W., Wiseman B.R., and Coe E.H., 1996,Quantitative trait loci and metabolic pathways: genetc control of the concentration of maysin, a corn earworm resistance factor in maize silks, Proc. Natl. Acad. Sci., 93 (17):8820-8825
  • 8[8]Cai D., Kleine M., Kite S., HarloffH.J., Sandal N.N., Marcker K.A., Klein-Lankhorst R.M., Salentijn E.M.J., Lange W.,Stiekema W.J., Wyss U., Grundler F.M.W., and Jung C.,1997, Positional cloning of a gene for nematode resistance in sugar beet, Science, 275 (5301): 832-834
  • 9[9]Chen X.M., Line R.F., and Leung H., 1998, Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis, Theor. Appl. Genet., 97 (3):345-355
  • 10[10]Collins N., Drake J., Aycliffe M., Sun Q.,Ellis J., Hulbert S.,and Pryor T., 1999, Molecular characterisation of the maize Rp 1-D rust resistance haplotype and its mutants, Plant Cell, 11:1365-1376

同被引文献387

引证文献25

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部