期刊文献+

星球漫游车超广角实时立体视觉系统 被引量:3

A Real Time Stereo Vision System for Planetary Rover with a Very Large Field of View
下载PDF
导出
摘要 给出了一种用于星球漫游车障碍检测和定位的超大视场立体视觉系统的实现方法.该系统采用具有超广角镜头(对角视场角约160度)的双目或三目摄像机获取场景立体图像对,利用摄像机标定参数对大变形图像进行修正等预处理,然后在外极线、连续性等约束条件下,基于查找表和 Intel MMX 指令集,使用 SAD 算法快速进行对应点匹配计算.实验表明,该系统在图像分辨率为320×120像素、视差为64级时,利用普通工控机恢复稠密深度图的速度为10帧/秒,并能使机器人以1米/秒的速度行走. Implementation of a real time stereo vision system for obstacle detection andlocalization is discussed for planetary rover.The system employs binocular or trinocularstereo with fish-eye lenses to capture stereo pairs with a very large field of view(FOV~160°).Camera calibration parameters are used to perform distorted image correction,epipolarrectification and LoG filtering,and the SAD similarity is computed to estimate dense depthmaps under the epipolar and smooth constraints.Using the Intel MMX instruction set andLUT,the system can complete dense depth mapping and obstacle detection in real time.Thetest result shows that the system can produce dense depth maps at 10Hz with a resolutionof 320X120 pixels and a disparity of 64 levels using standard PCs,are allow the robot tosafely travel at 1m/s.
出处 《自动化学报》 EI CSCD 北大核心 2004年第6期986-990,共5页 Acta Automatica Sinica
基金 国家"863"计划项目(2002AA735051)国家自然科学基金(K60075005)资助~~
关键词 立体视觉 视觉导航 超广角摄像机 星球漫游车 Stereo vision vision navigation FOV camera planetary rover
  • 相关文献

参考文献9

  • 1Murry D, Jennings C. Stereo vision based mapping and navigation for mobile robots. In: Proceedings of IEEE Conference on Robotics and Automation. USA: 1997
  • 2Mathies L, Brown E. Machine vision for Obstacle detection and ordnance Recognition. In: Proceedings of Annual meeting of the Association for Unmanned Vehicle Systems. USA: 1996
  • 3Williamson T. A high performance stereo system for obstacle detection [Ph.D. dissertation]. Pittsburgh,USA: Robotics Institute, Carnegie Mellon University, 1998
  • 4Sharon L, Burdick J, Matthies L. Autonomous path planner implemented on the Rocky 7 prototype microrover. In: Proceedings of IEEE Conference on Robotics and Automation. UAS: 1998. 292-297
  • 5Shah S, Aggarwal J. Depth estimation using stereo fish-eye lenses. In: Proceedings of International Conference on Image Processing. USA: 1995. 740-744
  • 6Shah S, Aggarwal J. A simple calibration procedure for fish-eye lens camera. In: Proceedings of IEEE Conference on Robotics and Automation. USA: 1994. 3422-3427
  • 7JIA Y D, XU Y H, LIU W C et al. Miniature Stereovision Machine for Real-Time Dense Depth Mapping,In: Proceedings of International Conference on Computer Vision Systems. Austria: 2003. 268-277
  • 8Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Transaction On Pattern Analysis and Machine Intelligence, 1992, 14(10): 965-980
  • 9Ayache N, Hansen C. Rectification of images for binocular and trinocular stereovision. In: Proceedings of IEEE Conference on Pattern Recognition. USA: 1988. 11-16

同被引文献21

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部