线性互补问题的一种解法
摘要
本文提出了一种新的方法解线性互补问题.首先我们用n-维长方体表示一类线性互补问题解的范围,然后利用Krawczyk区间算子,找到了它的唯一解。
出处
《南京大学学报(数学半年刊)》
CAS
2004年第2期239-248,共10页
Journal of Nanjing University(Mathematical Biquarterly)
参考文献10
-
1Alefeld G , Chen X and Potra F A. Numerical Validation of Solutions of Linear Complementarity Problems. Numer. Math., 1999, 83: 1-23.
-
2Moore R E. A Test for Existence of Solutions to Nonlinear Systems. SIAM J. Numer. Anal. ,1977, 14: 611-615.
-
3Eaves B C. On the Basic Theorem of Complementarity. Mathematical Programming 1978, 1:68-75.
-
4Goetz Alefeld, Wang Z Y and Shen Z H. Enclosing Solutions of Linear Complementerity Problems for H-Matrices. 2004, to Appear in "Reliable Computing"
-
5Alefeld G E, Chen X and Potra F A. Numerical Validation of Solutions of Nonlinear Complementarity Problems. Research Report, March, 2000.
-
6Chen X . A Verification Method for Solutions of Nonsmooth Equations. Computing, 1997, 58:281 - 294.
-
7Cottle R M, Pang J and S Stone R E. The Linear Complementarity Problem. Academic Press 1992.
-
8He B S. A Projection and Contraction Method for a Class of Linear Complementarity Problem and its Application in Convex Quadratic Programming. Applied Mathematics and Optimization 1992, 25: 247-262.
-
9Mangasarian O L. Equivalence of the Complementarity Problem to a System of Nonlinear Equations. SIAM J. Appl. Math. , 1976,31: 89-92.
-
10Ortega J M and Rhenboldt W C. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 1970.
-
1王海鹰,周继东,董祖引.关于椭圆型方程的一类解法[J].河海大学学报(自然科学版),2003,31(6):719-722.
-
2浦志勤,薛巧玲,沈祖和.用区间Gauss-Seidel方法解非线性互补问题(英文)[J].南京师大学报(自然科学版),2005,28(3):20-26.
-
3王海鹰,周继东,董祖引.对偶线性规划问题的一类解法[J].河海大学学报(自然科学版),2003,31(5):601-604.
-
4王海鹰,董祖引.直交非线性互补问题的区间算法[J].河海大学学报(自然科学版),2006,34(4):473-476. 被引量:1