期刊文献+

3D流场数值粒子跟踪的误差分析

Error Analysis of Numerical Particle Tracing in 3D Flow Field
下载PDF
导出
摘要 在可视化的数据流模型中引入误差处理,对3D流场的数值粒子跟踪进行误差分析.针对Runge-Kutta方法的粒子跟踪,讨论了局部误差控制方法,同时采用Richardson外推、改变单步误差容限重复积分等方法来估计全局跟踪误差,最后给出了几种误差可视化方法.误差可视化结果图像清楚地反映出了粒子轨迹的可信度. In order to analyze particle tracing error in 3D flow field, different forms of error disposal are introduced into visualization data flow model. Technique controlling local error for particle tracing using Runge-Kutta method are discussed firstly. By Richardson extrapolation and changing tolerance, global tracing errors could be estimated. At last, several methods of error visualization are brought forward. The final images present the accuracy of tracking path better.
作者 张文
出处 《装备指挥技术学院学报》 2004年第5期95-98,共4页 Journal of the Academy of Equipment Command & Technology
基金 部委级资助项目
关键词 粒子跟踪 数据流模型 可视化方法 数值 跟踪误差 图像 可信度 复积分 RUNGE-KUTTA方法 流场 flow field visualization error analysis particle tracing
  • 相关文献

参考文献8

  • 1[1]Burden R L. Numerical analysis.6th eds [M]. Pacific Grove: Brooks/Cole Publishing Company,1997.
  • 2[2]Lodha S. UFLOW: Visualizing uncertainty in fluid flow [A]. Yagel R and Nielson G M. Proceedings Visualization'96 [C]. Washington: IEEE Computer Society,1996.249-254.
  • 3[3]Wittenbrink C M. Glyphs for visualizing uncertainty in vector fields [J]. IEEE Transactions on Visualization and Computer Graphics,1996,2(3):266-279.
  • 4张文,李晓梅.大规模非结构网格上基于PC的流线可视化研究[J].计算机研究与发展,2001,38(7):856-862. 被引量:2
  • 5张文,李晓梅.利用流SIMD扩展加速3D曲线网格的流线计算[J].计算机学报,2001,24(8):785-790. 被引量:4
  • 6[6]Buning P. Sources of error in the graphical analysis of CFD results [J]. Journal of Scientific Computing,1988,3(2):149-164.
  • 7[7]Gragg W B. Repeated extrapolation to the limit in the numerical solution of ordinary differential equations [J]. SIAM Journal of Numerical Analysis, serial B,1965,2:384-403.
  • 8[8]Higham D J. Global error versus tolerance for explicit Runge-Kutta methods [J]. IMA Journal of Numerical Analysis,1991,11: 457-480.

二级参考文献12

  • 1[1]Sadarjoen A et al. Particle tracking algorithms for 3-D curvilinear grids. In: Nielson G et al. Scientific Visualization: Overviews, Methodologies, and Techniques. California: IEEE Computer Society Press, 1997. 299-323
  • 2[2]Schroeder W J et al. The Visualization Toolkits: An Object-Oriented Approach to 3D Graphics. Upper Saddle River, NJ: Prentice Hall Inc., 1996
  • 3[3]Ueng S K et al. Efficient streamline, streamribbon and streamtube constructions on unstructured grids. IEEE Trans Visualization and Computer Graphics, 1996, 2(2):100-110
  • 4[4]Kenwright D, Lane D. Interactive time-dependent particle tracing using tetrahedral decomposition. IEEE Trans Visualization and Computer Graphics, 1996, 2(2):120-129
  • 5[5]Kenwright D, Mallinson G D. A 3-D streamline tracking algorithm using dual stream functions. In: Proc Visualization'92, Boston, Massachusetts, 1992. 62-68
  • 6[6]Cox M et al. Developing High-performance Graphics Applications for PC Platform. New York: ACM Press, 1998
  • 7[7]Intel(○)/(R) Architecture Software Developer's Manual, Volume 1: Basic Architecture. Intel Corporation. available at http://developer.intel.com/design/PentiumIII/manuals/
  • 8[8]Intel(○)/(R) Architecture Optimization Reference Manual. Intel Corporation. available at http://developer.intel.com/ design/PentiumIII/manuals/
  • 9[9]Burden R L. Numerical Analysis. 6th eds. Pacific Grove: Brooks/Cole Publishing Company, 1997
  • 10[10]Data Alignment and Programming Issues for the Streaming SIMD Extensions with the Intel(○)/(R) C/C++ Compiler. Intel Corporation. available at http://developer.intel.com/vtune/cbts/strmsimd/833down.htm/

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部