期刊文献+

Stokes问题的集中质量非协调有限元法 被引量:1

Lumped Mass Nonconforming Finite Element Methods for Stokes Problem
下载PDF
导出
摘要 针对其平面有界凸区域上的一类非定常不可压 Stokes方程 ,提出了一种新的有限元方法 ,借助于所谓的速度 -压力混合型公式 ,讨论了非定常不可压 Stokes方程的质量集中非协调有限元逼近格式 (全离散情形 )。首先 ,给出了非定常不可压 Stokes方程的质量集中非协调 Galerkin有限元逼近的全离散格式 ,其次 ,对所讨论问题的解与其所给出的离散问题的解之间的误差进行了分析研究 ;最后 ,利用 Stokes投影算子的性质和离散的LBB条件 ,得到了非定常不可压 Stokes方程关于速度 L2 模和能量模及压力 L2 模方面的最优阶误差估计。 Lumped mass nonconforming finite element methods are presented for an initial-boundary va-lue problem of a non-stationary Stokes equation in two dimension bounded domain by using the velocity-pressure mixed formulation. Firstly, the discrete approximation scheme of the lumped mass nonconforming finite element methods are studied to discuss the problem-the nonstationary Stokes equation. Secondly, the error estimates for the solution of the problem and the solution of the discrete approximation scheme are considered. Finally, using the condition of the Stokes projection operator and the discrete LBB condition, optimal error estimates on L 2-norm, energy-norm of velocity and L 2-norm of the pressure are derived.
作者 戴培良
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2004年第6期803-806,共4页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 STOKES问题 非协调有限元法 误差估计 集中质量 Stokes equation nonconforming finite element method error estimate lumped mass
  • 相关文献

参考文献9

  • 1Nie Yiyong, Thomee V. A lumped mass finite element method with quadrature for a nonlinear parabolic problem [J ]. IMAJ Numer Anal, 1985, 5(2):371~396.
  • 2Teman R. Navier-Stokes equations[M]. Amsterdam: North-Holland, 1984,78~286.
  • 3Garcia S M F. Improved error estimates for mixed finite element approximations for nonlinear parabolic equations- the continuous time case [J]. Numer Methods for PDE,1994,10(1):127~147.
  • 4Cowsar L C, Dupont T F, Wheeler M F. A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary condition[J]. SIAM J Numer Anal, 1996,33 (2): 492~ 504.
  • 5Kloucek P, Li B, Luskin M. Analysis of a class of nonconforming finite elements for crystalhline microstructures[J]. Math Comp, 1996,67 (4):1111~1135.
  • 6Rannacher R. On the finite element approximation of the nonstationary Navier-Stokes problems. Lecture Notes in Math[M]. New York: Springer-Verlag,1980.82~168.
  • 7戴培良,戴嘉尊.非稳态四阶椭圆方程的Galerkin有限元法[J].南京航空航天大学学报,2002,34(1):27-30. 被引量:3
  • 8Crouzeix M, Falk R S. Nonconforming finite elements for the Stokes problems [J]. Math Comp,1989,52(2): 437~456.
  • 9戴培良,戴嘉尊.一类非线性双曲型方程的Galerkin方法[J].南京航空航天大学学报,2001,33(2):159-162. 被引量:3

二级参考文献2

共引文献3

同被引文献13

  • 1戴培良,许学军.Navier-Stokes方程的变网格非协调有限元法[J].高校应用数学学报(A辑),1995,10(3):265-274. 被引量:2
  • 2Girauh V,Raviart A. Finite Element Methods for Navier-Stokes Equations[ M]. New York :Springer-Verlag, 1986.
  • 3Teman R. Navier-Stokes equations[M]. Amsterdam: North-Holland, 1984.
  • 4Heywood J G , Rannaeher R. Finite element approximate of the nonstationary Navier-Stokes Problem, I Regularity of solutions and second order error estimates for spatial discretization[J]. SIAMJ Numer Anal, 1982, 19:275-311.
  • 5Rannacher R. On the Finite Element Approximate of the Nonstationry Navier-Stokes Problem, Lecture Notes in Math[ M]. New York : Springer-Verlag, 1980:408-424.
  • 6Thom e e V. Galerkin Finite Element Methods for Parabolic Problem , Lecture Notes in Math [ M]. New York: Springer-Verlag , 1984: 1054.
  • 7Crouzeix M, Falk R S. Nonconforming finite elements for the Stokes problems[J]. Math Comp ,1989,52(2):437-456.
  • 8Glowinski R, Pironneau O. On a mixed finite element approximation of the Stokes problems, I Convergence of the approximate solution[J|. Numer Math, 1979,33:397-424.
  • 9Ciarlet P G. The Finite Element Methods for Elliptic Problems[M].Amsterdam: North-Holland, 1978.
  • 10Crouzeix M, Raviartm A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations[J]. RAIRO Anal Numer, 1973,7:33-76.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部