摘要
设G,G′是两个同构的群,先给出了由群G的亚同态构造群G′的亚同态的一种方法,并且证明了群G上的亚同态与群G′上的亚同态是一一对应的.再通过另外一种方法,简化了文献[3]中一个主要结果的证明.
Let G and G′ be two groups respectively, and G is isomorphic to G′. The paper gives one method to construct the metahomomorphism of group G′ by using that of group G, and it proves that there exists a one-to-one correspondence between the metahomomorphisms of group G′ and that of group G. The proof of one main result in reference is also simplified.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2004年第4期415-417,共3页
Journal of Central China Normal University:Natural Sciences
关键词
群
亚同态
亚同态核
群同构
group
metahomomorphism
kernel of metahomomorphism
isomorphism of group