期刊文献+

Non-linear Semigroup of a Class of Abstract Semilinear Functional Differential Equations with a Non-Dense Domain

Non-linear Semigroup of a Class of Abstract Semilinear Functional Differential Equations with a Non-Dense Domain
原文传递
导出
摘要 In this work,we are concerned with a general class of abstract semilinear autonomous functional differential equations with a non-dense domain on a Banach space.Our objective is to study,using the Crandall-Liggett approach,the solutions as a semigroup of non-linear operators. In this work,we are concerned with a general class of abstract semilinear autonomous functional differential equations with a non-dense domain on a Banach space.Our objective is to study,using the Crandall-Liggett approach,the solutions as a semigroup of non-linear operators.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第5期933-942,共10页 数学学报(英文版)
关键词 Non-linear semigroup Semilinear functional differential equation Hille-Yosida operator Crandall-Ligget t approach Non-linear semigroup Semilinear functional differential equation Hille-Yosida operator Crandall-Ligget t approach
  • 相关文献

参考文献17

  • 1Travis, C. C., Webb, G. F.: Existence and stability for partial functional differential equations. Trans.Amer. Math. Soc, 200,395-418 (1974).
  • 2Adimy, M., Ezzinbi, K.: Local existence and linearized stability for partial functional differential equations.Dynamic Systems and Applications, 7, 389-404 (1998).
  • 3Prato Da, G., Sinestrari, E.: Differential operators with non-dense domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14, 285-344 (1987).
  • 4Thieme, H. R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Diff. Int.Equat., 3, 1035-1066 (1990).
  • 5Yosida, K.: Functional Analysis, 2nd ed., Springer-Verlag, New York 1968.
  • 6Crandall, M. G., Liggett, T. M.: Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93,265-298 (1971).
  • 7Adimy, M., Ezzinbi, K.: Spectral Decomposition for Some Partial Functional Differential Equations of Retarded Type, preprint, URS 2055 C.N.R.S Pau 99/28, 1999.
  • 8Crandall, M. G.: Differential equations on convex sets. J. Math. Soc. Japan, 22, 443, 455 (1970).
  • 9Crandall, M. G., Liggett, T. M.: A theorem and a counter example in the theory of semigroups of nonlinear transformations. Trans. Math. Amer. Soc., 160, 263-278 (1971).
  • 10Crandall, M. G.,Pazy, A.: Semigroups of nonlinear contractions and dissipative sets. J. Func. Anal., 3,376-418 (1969).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部