期刊文献+

Giant magnetoimpedance effect in Fe-Zr-Nb-Cu-B nanocrystalline ribbons

Giant magnetoimpedance effect in Fe-Zr-Nb-Cu-B nanocrystalline ribbons
下载PDF
导出
摘要 The giant magnetoimpedance effect of the nanocrystalline ribbonFe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11) (atom fraction in %) was investigated. There is an optimumannealing temperature (T_A≈ 998 K) for obtaining the largest GMI (giant magneto-impedance) effectin the ribbon Fe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11). The ribbon with longer ribbon length has strongerGMI effect, which may be connected with the demagnetization effect of samples. The frequencyf_(max), where the maximum magnetoimpedance GMI(Z)_(max) = [(Z(H) - Z(0))/Z(0)]_(max) occurs, isnear the intersecting frequency f_i of the curves of GMI(R), GMI(X), and GMI(Z) versus frequency.The magnetoreactance GMI(X) decreases monotonically with increasing frequency, which may be due tothe decrease of permeability. In contrast, with the AC (alternating current) frequency increasing,the inagnetore-sistance GMI(R) increases at first, undergoes a peak, and under then drops. Theincrease of the magnetoresistance may result from the enhancement of the skin effect with frequency.The maximum magnetoimpedance value GMI(Z)_(max) under H = 7.2 kA/m is about -56.18% at f= 0.3 MHzfor the nanocrystalline ribbon Fe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11) with the annealing temperatureT_A= 998 K and the ribbon length L = 6 cm. The giant magnetoimpedance effect of the nanocrystalline ribbonFe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11) (atom fraction in %) was investigated. There is an optimumannealing temperature (T_A≈ 998 K) for obtaining the largest GMI (giant magneto-impedance) effectin the ribbon Fe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11). The ribbon with longer ribbon length has strongerGMI effect, which may be connected with the demagnetization effect of samples. The frequencyf_(max), where the maximum magnetoimpedance GMI(Z)_(max) = [(Z(H) - Z(0))/Z(0)]_(max) occurs, isnear the intersecting frequency f_i of the curves of GMI(R), GMI(X), and GMI(Z) versus frequency.The magnetoreactance GMI(X) decreases monotonically with increasing frequency, which may be due tothe decrease of permeability. In contrast, with the AC (alternating current) frequency increasing,the inagnetore-sistance GMI(R) increases at first, undergoes a peak, and under then drops. Theincrease of the magnetoresistance may result from the enhancement of the skin effect with frequency.The maximum magnetoimpedance value GMI(Z)_(max) under H = 7.2 kA/m is about -56.18% at f= 0.3 MHzfor the nanocrystalline ribbon Fe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11) with the annealing temperatureT_A= 998 K and the ribbon length L = 6 cm.
出处 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期235-240,共6页 稀有金属(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China (No. 50271036)
关键词 magnetic materials nanocrystalline ribbon giant magnetoimpedance effect PERMEABILITY ANNEALING magnetic materials nanocrystalline ribbon giant magnetoimpedance effect permeability annealing
  • 相关文献

参考文献10

  • 1[1]Mohri K., Kawashima K., Kohzawa T., and Yoshida H., Magneto-inductive effect in amorphous wires [J], IEEE Trans. Magn., 1992, 28 (5): 3150.
  • 2[2]Panina L.V., Mohri K., Bushida K., and Noda M., Magneto-impedance in Co-rich amorphous alloys [J], J. Appl. Phys., 1994, 76 (10): 6198.
  • 3[3]Beach R.S. and Berkowitz A.E., Giant magnetic field dependent impedance of amorphous FeCoSiB wire [J], Appl. Phys. Lett., 1994, 64 (26): 3652.
  • 4[4]Machado F.L.A., Martins C.S., and Rezende S.M., Giant magnetoimpedance in the ferromagnet Co70-xFexSi15B10 alloys [J], Phys. Rev. B, 1995, 51 (6):3926.
  • 5[5]Sommer R.L. and Chien C.L., Longitudinal and transverse magneto-impedance in amorphous Fe73.5Cu1Nb3Si13.5B9 films [J], Appl. Phys. Lett., 1995, 67 (22): 3346.
  • 6[6]Kurlyandskaya GV., Garcia-Beneytez J.M., Vazquez M., Sinnecker J.P., Lukshina V.A., and Potapov A.P.,The influence of field- and stress-induced magnetic anisotropy on the magnetoimpedance in nanocrystal line FeCuNbSiB alloys [J], J. Appl. Phys., 1998, 83 (11): 6581.
  • 7[7]Knobel M., Chiriac H., Sinnecker J.P., Marinescu S., Ovari T.A., and Inoue A., Comparative study of the giant magneto-impedance effect in Fe-based nanocrystalline ribbons [J], Sensors and Actuators A 1997, 59 (1-3): 256.
  • 8[8]Sommer R.L. and Chien C.L., Giant magneto-impedance effects in Metglas 2705M [J], J. Appl. Phys. 1996, 79 (8): 5139.
  • 9[9]Tejedor M., Hernando B., Sanchez M.L., Prida V.M., Garcia-Beneytez J.M., Vazquez M., and Herzer G, Magnetoimpedance effect in zero magnetostriction nanocrystalline Fe73.5Cu1Nb3Si16.sB6 ribbons [J], J. Magn. Magn. Mater., 1998, 185 (1): 61.
  • 10[10]Han T, Analysis of the Giant Magneto-Impedance Effect in Soft Magnetic Metallic Ribbons [D], Shan dong University, Jinan, 2003: 45.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部