期刊文献+

一类KKT系统的结构敏度分析 被引量:1

STRUCTURED SENSITIVITY ANALYSIS FOR A CLASS OF KKT SYSTEMS
原文传递
导出
摘要 本文讨论一类KKT系统的敏度分析,这类KKT系统产生于用有限元方法离散Stokes方程,有结构特性。首先给出了最佳向后扰动界,接下来定义了偏条件数并导出了表达式,最后给出了新的扰动界。 In this paper, we deal with a class of KKT systems that arise in applying mixed finite element method to Stokes and Maxwell equations. Optimal backward perturbation analysis is investigated. The partial condition numbers are defined and explicit formulae are derived. Finally, some new perturbation bounds are proved.
出处 《计算数学》 CSCD 北大核心 2004年第4期427-436,共10页 Mathematica Numerica Sinica
基金 教育部物理海洋重点实验室开放基金(NO.200305)
关键词 KKT系统 最佳向后扰动界 STOKES方程 表达式 条件数 离散 敏度分析 有限元方法 结构特性 Optimal backward perturbation bound, partial condition number,structured KKT system
  • 相关文献

参考文献13

  • 1M.Gulliksson, X.Q.Jin, and Y.M.Wei, Perturbation bounds for constrained and weighted least squares problems, Lin. Alg. Appl., 349(2002), 221-232.
  • 2A.Bjorck, Numerical Methods for Least Squares Problems, SIAM Press, Philadelphia,1996.
  • 3G.Strang, A framework for equilibrium equations, SIAM Rev., 30(1998), 283-297.
  • 4P.Arbenz and Z.Drmac, On positive semidefinite matrices with known null space, SIAM J. Matrix Anal. Appl., 24:1(2002), 132-149.
  • 5P.Arbenz and R.Geus, A comparison of solvers for large eigenvalue problems originating from Maxwell's equations, Numer. Linear Alg. Appl., 6(1999), 3-16.
  • 6F.Brezzi and M.Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput.Math. 15, Springer-Verlag, New York, 1991.
  • 7P.E.Gill, W.Murray, and M.H.Wright, Practical Optimization, Academic Press, New York, 1981.
  • 8F.J.Hall, Generalized inverse of a bordered matrix of operators, SIAM J. Appl. Math.,29:1 (1975), 152-163.
  • 9J-G.Sun, Structured backward errors for KKT systems, Lin. Alg. Appl., 288(1999), 75-88
  • 10孙继广,矩阵扰动分析,北京:科学出版社,2001,第二版.

同被引文献10

  • 1Bai Z Z. Structured preconditioners for nonsingular matrices of block two-by-two structures[J]. Math. Comput., 2006, 75: 791-815.
  • 2Bai Z Z, Ng M K. On inexact preconditioners for nonsymmetric matrices[J]. SIAM J. Sci. Comput., 2005, 26: 1710-1724.
  • 3Bao G, Sun W W. A fast algorithm for the electromagnetic scattering from a large Cavity[J]. SIAM J. Scientific Computing, 2005, 27: 553-574.
  • 4Boggs P T, Tolle J W. Sequential quadratic programming[M]. Cambridge: Acta Numer., Cambridge University Press, 1995: 1-51.
  • 5Sturler E D, Eiesen J. Block-diagonal and constraint preconditioners for nonsysmmetric indefinite linear systems, Part Ⅰ: theory[J]. SIAM J. Sci. Comput., 2005, 26: 1598-1619.
  • 6Sun J G. Backward perturbation analysis of certain characteristic subspaces[J]. Numer. Math., 1993, 65: 357-382.
  • 7Sun J G. Optimal backward perturbation bounds for linear systems and linear least squares problems[M]. UMINF 96.15, ISSN-0348-0542, Deparment of Computing Science, Umea University, 1996.
  • 8Sun J G. Structured backward errors for KKT systems[J]. Linear Algebra Appl., 1999, 288: 75-88.
  • 9Oettli W, Prager W. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides[J]. Numer. Math., 1964, 6: 405-409.
  • 10刘新国,王卫国.关于结构KKT方程组的扰动分析[J].计算数学,2004,26(2):179-188. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部