期刊文献+

HAT AVERAGE MULTIRESOLUTION WITH ERROR CONTROL IN 2-D

原文传递
导出
摘要 Multiresolution representations of data are a powerful tool in data compression. For a proper adaptation to the singularities, it is crucial to develop nonlinear methods which are not based on tensor product. The hat average framework permets develop adapted schemes for all types of singularities. In contrast with the wavelet framework these representations cannot be considered as a change of basis, and the stability theory requires different considerations. In this paper, non separable two-dimensional hat average multiresolution processing algorithms that ensure stability are introduced. Explicit error bounds are presented.
作者 SergioAmat
出处 《Journal of Computational Mathematics》 SCIE CSCD 2004年第6期777-790,共14页 计算数学(英文)
  • 相关文献

参考文献11

  • 1S. Amat and S. Busquier, Stability for Nonlinear 2-D Multiresolution: The Approach of A. Harten,Southwest J. Pure and Appl. Math., 2 (2001), 7-18.
  • 2S. Amat, Non Separable Multiresolution with Error Control, App. Math. Comput., 145 (2002),117-132.
  • 3S. Amat , F. Arandiga, A. Cohen and R. Donat, Tensor product multiresolution analysis with error control. Signal Processing, 82:4 (2002), 587-608.
  • 4S. Amat, F. Arandiga, A. Cohen, R. Donat, G. Garcia and M. von Oehsen, Data compression with ENO schemes, Applied and Computational Harmonic Analysis, 11 (2001), 273-288.
  • 5S. Amat and S. Busquier, A Note on the Stability of ENO Multiresolution, Inter. J. Computer Math, 79:10 (2002), 1093-1098.
  • 6S. Amat, S. Busquier and J.C. Trillo, On a modified ENO multiresolution for image data compression, submitted.
  • 7F. Arandiga and R. Donat, Nonlinear Multi-scale Decompositions: The Approach of A.Harten,Numerical Algorithms, 23 (2000), 175-216.
  • 8F. Arandiga, R. Donat and A. Harten, Multiresolution Based on Weighted Averages of the Hat Function I: Linear Reconstruction Operators, SIAM J. Numer. Anal., 36:1 (1999), 160-203.
  • 9F. Arandiga, R. Donat and A. Harten, Multiresolution Based on Weighted Averages of the Hat Function II: Nonlinear Reconstruction Operators, SIAM J. Sci. Comput., 20:3 (1999), 1053-1093.
  • 10A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math., 12 (1993), 153-192.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部