期刊文献+

A BRANCH AND BOUND ALGORITHM FOR SEPARABLE CONCAVE PROGRAMMING 被引量:2

原文传递
导出
摘要 In this paper, we propose a new branch and bound algorithm for the solution of large scale separable concave programming problems. The largest distance bisection (LDB) technique is proposed to divide rectangle into sub-rectangles when one problem is branched into two subproblems. It is proved that the LDB method is a normal rectangle subdivision(NRS). Numerical tests on problems with dimensions from 100 to 10000 show that the proposed branch and bound algorithm is efficient for solving large scale separable concave programming problems, and convergence rate is faster than ω-subdivision method.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2004年第6期895-904,共10页 计算数学(英文)
  • 相关文献

参考文献10

  • 1Falk J.E. and Soland R.M., An algorithm for separable nonconvex programming problems, Manage.Sci., 15 (1969), 550-569.
  • 2Hiroshi Konno, and Annista Wijayanayake, Portfolio Optimazation Problem under Concave Transaction Costs and Minimal Transaction Unit Constrains, Math. Program., Ser.B, 89 (2001), 233-250.
  • 3Horst R. and Tuy H., Global Optimization Deterministic Approaches, 3nd Edition, Springer,Berlin, 1997.
  • 4Konno H., Thach P. T. and Tuy H., Optimization on Low Rank Nonconvex Structures, Kluwer Academic Publishers, 1997.
  • 5Markowitz H. M., Portfolio Selection, Jounal of Finance, 7:1 (1952), 77-79.
  • 6Reiner Horst, Panos M. Pardalos and Nguyen V. Thoai, Introduction to Globle Optimization,Kluwer Academic Publishers, London, 1995.
  • 7Steinbach M.C., Markowitz Revisited: Single-Period and Multi-Period Mean-Variance Models,working Paper, Konrad-Zentrum fǔr Informationstechnik Berlin, Preprint SC-99-30, Aug, 1999.
  • 8Thai Quynh Phong, Le Thi Hoai An, and Pham Dinh Tao, Decomposition Branch and Bound Method for Globally Solving Linear Constrained Indefinate QPP, Operations Research Letters, 17(1995), 215-220.
  • 9Tuy H., Convex Analysis and Global Optimization, Kluwer Academic Publishers, 1998.
  • 10Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部