期刊文献+

夸克胶子喷注的人工神经网络识别研究 被引量:4

On the Identification of Quark and Gluon Jets Using Artificial Neural Network Method 
原文传递
导出
摘要 为了将人工神经网络用于高能物理中对喷注的分类识别 ,用从高能正负电子对撞的蒙特卡洛模拟中得到的不对称三喷注事件中的夸克喷注和胶子喷注的平均多重数、平均横动量和两类喷注所对的夹角的平均值作为输入BP神经网络的 3个特征参量 ,对 2 .5— 2 2 .5GeV能区的 8个能量间隔进行等精度的训练 .用训练好的神经网络模型对不对称三喷注事件中的夸克喷注和胶子喷注样本进行检验判定 ,并对混合喷注样本进行分类识别 .所得结果表明 ,有望将人工神经网络用于高能正负电子对撞产生的喷注的分类分析 . The identification of quark and gluon jets produced in e +e -collisions using the artificial neural network method is addressed.The structure and the learning algorithm of the BP(Back Propagation)neural network model is studied.Three characteristic parameters——the average multiplicity and the average transverse momentum of jets and the average value of the angles opposite to the quark or gluon jets are taken as training parameters and are inputed to the BP network for repeated training.The learning process is ended when the output error of the neural network is less than a pre-set precision(σ=0.005).The same training routine is repeated in each of the 8 energy bins ranging from 2.5—22.5 GeV,respectively.The finally updated weights and thresholds of the BP neural network are tested using the quark and gluon jet samples,getting from the non-symmetric three-jet events produced by the Monte Carlo generator JETSET 7.4.Then the pattern recognition of the mixed sample getting from the combination of the quark and gluon jet samples is carried out through applying the trained BP neural network.It turns out that the purities of the identified quark and gluon jets are around 75%—85%,showing that the artificial neural network is effective and practical in jet analysis.It is hopeful to use the further improved BP neural network to study the experimental data of high energy e +e - collisions.
出处 《高能物理与核物理》 CSCD 北大核心 2004年第11期1141-1145,共5页 High Energy Physics and Nuclear Physics
基金 国家自然科学基金 (10 3 75 0 2 5 ) 湖北省高等学校优秀中青年科技创新团队计划项目 (16) 湖北省教育厅重点项目 (2 0 0 3A0 0 2 )资助~~
关键词 胶子喷注 夸克喷注 重数 电子对 高能物理 动量 样本 分类识别 事件 人工神经网络 artificial neural network,BP network model,pattern recognition,high energy e +e - collisions,quark jet,gluon jet
  • 相关文献

参考文献8

  • 1[1]AMY Coll. Kim Y K et al. Phys. Rev. Lett. ,1989,63:17
  • 2[2]JADE Coll. Bartel W et al. Phys. Lett. ,1983,B123:460
  • 3[3]OPAL Coll. Alexander G et al. Phys. Lett. ,1991,B265:462
  • 4[5]Bishop C M. Neural Networks for Pattern Recognition. Oxford, UK:Oxford University Press, 1995
  • 5[6]Ripey B D. Pattern Recognition and Neural Networks. Combridge, UK:Cambridge University Press, 1996
  • 6[7]HAN Jia-Wei. Micheline Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2002
  • 7[8]Dokshitzer YU L.J.Phys. ,1991,G17:1537
  • 8[10]YU Mei-Ling, LIU Lian-Shou. Chin. Phys. Lett, 2002,19:647

同被引文献14

  • 1李祚泳,邓新民.人工神经网络在水环境质量评价中的应用[J].中国环境监测,1996,12(2):36-39. 被引量:18
  • 2Lansdell C P L. Charged Xi production in 130 GeV Au-Au collision at the relativistic heavy ion collider[D]. PhD thesis. Austin; The University of Texas, 2002.
  • 3Lonnblad L, Peter,son C, Rognvaldsson T, Finding gluon jets with a neural trigger[J]. Phys Rev Lett,1990,65:1 321-1 324.
  • 4Lonnblad L, et al. Mass reconstrution with a neural network[J].Physics Letters B, 1992, 278(1) :181-186.
  • 5DECAY Particle Data Group. Review of particle properties[J]. Phys Rev D, 2002, 66: 010001(1-974).
  • 6Hagan M T, Demuth H B, Beale M, Neural Network Design[M]. Thomson Asia Pte Ltd China Machine Press and CITIC Publishing House,2002.
  • 7Csabai I, Czak F, Fodor Z. Quark-and gluon-jet separation using neural networks[J]. Phys Rev D,1991, 44:1 905-1 908.
  • 8Yu M L, Zhang K S, Liu L S. Application of artificial neural network to the identification of Quark and Gluon Jets[J]. Int J M Phys A, 2005, 20:7 603-7 611.
  • 9胡守仁等.神经网络导论[M]国防科技大学出版社,1993.
  • 10张波,张景肖.应用随机过程[M]清华大学出版社,2004.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部