期刊文献+

支持向量机在纸浆蒸煮过程Kappa值软测量中的应用研究

Application of Support Vector Machine Method in Soft Measurement of Kappa Number of Kraft Pulping Process
下载PDF
导出
摘要 针对纸浆蒸煮过程机理复杂、影响因素众多和数据不完备条件下纸浆Kappa值预报问题,在介绍支持向量机基本原理和实现算法的基础上,探讨了支持向量机方法在纸浆Kappa值预报中的应用,经过与线性回归方法和人工神经网络方法预报结果比较,表明该方法具有精度高、速度快、泛化能力强的特点,取得了较传统建模方法更好的预报效果。 Aiming at the problem of predicting Kappa number of kraft pulping process under circumstances of complicated process kinetics and poor basic information, the support vector machine method is introduced. The basic theory and algorithm of the method are presented, and application of the method to predict Kappa number is conducted. Comparison is made between SVM methods and the traditional methods (linear regression and artificial neural network). The comparative result indicates that SVM method is high in precision, faster in computation and has a better generalization ability. Based on this new method, we get the better result to predict the Kappa number than the traditional methods.
出处 《计算机测量与控制》 CSCD 2004年第11期1014-1017,共4页 Computer Measurement &Control
基金 国家自然科学基金资助项目(#69874014&60274033) 863计划基金资助项目(#2001AA413110)。
  • 相关文献

参考文献13

二级参考文献48

  • 1于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 2袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1999..
  • 3赵辉 李进生 郭秀林.地下水位动态的人工神经网络研究[A]..农业节水与地下水开发利用[C].,2000..
  • 4[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1999.
  • 5[2]Müller K R, Smola A J, Rats¨ch G, et al. Predicting timeserieswithsupport vector machines[A]. Proc ICANN′97[C]. New York: Springer,1997.999-1004.
  • 6[3]Drucker H, Burges C J, Kaufman L, et al. Support vector regression machines[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.155-161.
  • 7[4]Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.281-287.
  • 8[5]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. 5th Annual ACM Workshop COLT[C]. Pittsburgh: ACM Press,1992.144-152.
  • 9[6]Campbell C. Algorithmic approaches to training support vector machnies: A survey[A]. Proc ESANN′2000[C]. Belgium: D-Facto Publications,2000.27-36.
  • 10[7]Marsh L S, Albright L D. Economically optimum day temperature for greenhouse hydroponic lettuce production - Part 2: Results and simulations[J]. Trans ASAE,1991,34(3):557-562.

共引文献2618

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部