期刊文献+

齐次群上二阶半线性偏微分方程的一类Picone型恒等式和Sturmian比较定理 被引量:4

A PICONE TYPE IDENTITY AND STURMIAN COMPARISON THEOREM OF SECOND ORDERSEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS ON THE HOMOGENEOUS GROUP
原文传递
导出
摘要 本文给出了齐次群上的一类广义Picone型恒等式,由此证明了以下半线性方程组(其中 表示齐次群上的广义梯度)的Sturmian比较定理及一类振荡定理,并用于Heisenberg群上一类半线性方程. In this paper, we prove a generalized Picone type identity on the homogeneous group. Then, we give a Sturmian comparison theorem and a oscillation theorem of the following semilinear partial differential equation system where is the generalizing gradient of the homogeneous group. Moreover, we apply the oscillation theorem to a semilinear partial differential equation on the Heisenberg group. Finally, by using the method of Allegretto and Huang, we prove a generalized Hardy type inequality.
出处 《应用数学学报》 CSCD 北大核心 2004年第4期691-701,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10371099号) 陕西省自然科学基金资助项目
关键词 HEISENBERG群 半线性方程 比较定理 恒等式 二阶 偏微分方程 广义梯度 并用 振荡 Picone type identity, Sturmian comparison theorem, homogeneous group, semilinear equation, oscillation, Hardy type inequality
  • 相关文献

参考文献10

  • 1Picone M. Sui Valori Eccezionali di un Parametro da cui Dipende Un'equazione Differenziale Lineare Ordinaria del Second Ordine. Ann. Scuola Norm. Sup. Pisa, 1909, 11:1-141
  • 2Allegrtto W, Huang W X. A Picone's Identity for the P-Laplacian and Applications. Nonlinear Analysis Theory Methods & Applications, 1998, 32(7): 819-830
  • 3Jaros J, Kusano T. A Picone Type Identity for Second order Half-linear Differential Equations. Acta Math. Univ. Comenian, 1999, 68:117-121
  • 4Jaros J, Kusano T. On Second-order Half-linear Differntial Equations with Forcing Term.Surikaisekikenkyusho Kokyuroku, 1997, 984:191-197
  • 5Kusano T, Jaros J, Yoshida N. A Picone-type Identity and Sturmian Comparison and Oscillation Theorems for a Class of Half-linear Partial Differental Equations of Second Order. Nonlinear Analysis,2000, 40:381-395
  • 6Folland G B. Subelliptic Estimates and Functions Spaces on Nilpotent Lie Group. Ark. Math., 1975,13:161-207
  • 7Garofalo N, Lanconelli E. Frequency Functions on the Heisenberg Group, the Uncertainty Priciple and Unique Continuation. Ann. Inst. Fourier (Grenoble), 1990, 40:313-356
  • 8Kusano T, Naito Y. Oscillation and Nonoscillation Criteria for Second order Quasilinear Differential Equations. Acta Math. Hungar, 1997, 76:81-99
  • 9Kusano T, Naito Y, Ogata A. Strong Oscillation and Nonoscillation of Quasilinear Differential Equations of Second Order. Differential Equations Dyn. Systems, 1994, 2:1-10
  • 10Niu P, Zhang H, Wang Y. Hardy Type and Rellich Type Inequalities on the Heisenberg Group. Proc.A.M.S., 2001, 129:3623-3630

同被引文献18

  • 1韩亚洲,张书陶.Caffarelli-Kohn-Nirenberg不等式的证明[J].浙江大学学报(理学版),2007,34(5):492-498. 被引量:2
  • 2HAN Y Z,NIU P C.Some Hardy type inequalities in the Heisenberg group[J].J of Inequalities in Pure and Applied Mathematics,2003,4(5):103.
  • 3KUSANO T,JAROS J,YOSHIDA N.A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order[J].Nonlinear Analysis,2000,40:381-395.
  • 4NIU P C,ZHANG H Q,WANG Y.Hardy type and Rellich type inequalities on the Heisenberg group[J].Proc Amer Math Soc,2001,129:3623-3630.
  • 5HARDY G H,LITTLEWOOD L E,POLYA G.Inequalities[M].2nd Edition,Cambridge:Cambridge University Press,1952.
  • 6CAFFARELLI L,KOHN R,NIRENBERG L.First order interpolation inequalities with weights[J].Compositio Mathematica,1984,53:259-275.
  • 7SCOTT BRADLEY J.Hardy inequalities with mixed norms[J].Canad Math Bull,1978,21:405-408.
  • 8BADIALE M,TARANTELLO G.A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics[J].Arch Rational Mech Anal,2002,163(4):259-293.
  • 9HAN Y Z,NIU P C.Hardy-Sobolev type inequalities on the H-type group[J].Manuscripta Math,2005,118:235-252.
  • 10ALLEGRETTO W,HUANG Y X.A Picone's identity for the p-Laplacian and applications[J].Nonlinear Analysis,1998,32:819-830.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部