期刊文献+

基于射影变换模型的图像特征点集配准 被引量:1

Image Registration from Feature Point Sets Based on Projective Transformation
下载PDF
导出
摘要 图像配准是计算机视觉中目标识别的一种基本方法,其目的是在待识别图像中寻找与模型图像的最佳匹配。该文讨论以特征点表示的图像间的配准问题,利用矩阵分解理论推导出射影变换下特征点集配准的闭合公式,给出变换参数估计的算法,并用模拟数据和图像角点检测的真实数据加以验证。实验表明该方法精确、稳定、受噪声影响小。 This paper investigates the image registration from feature point sets.Image registration is a fundamental object recognition method in computer vision and it aims to find best matches between two or more point sets when there are geometric distortions,point measurement errors and contamination present.Up to now,closed form solution has been developed for the similarity transformation.This paper concentrates on image registration from feature point sets whose transformation is projective and gives the closed form solution of the transformation parameters using the matrix decomposition theories.The algorithms are evaluated on both synthetic and real world images and the experiment results show that the methods given in this paper are accurate,stable and are only affected slightly by noise.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第34期42-44,共3页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:60143003) 安徽省教育厅自然科学研究项目(编号:2003KJ005)资助
关键词 配准 射影变换 闭合公式 image registration,projective transformation,close form solution
  • 相关文献

参考文献11

  • 1Lisa Gottesfeld Brown. A survey of image registration techniques[J].Acm Computing Surveys, 1992 ;24(4) :325~376
  • 2Bookstain F L.Shape and the information in medical images:a decade of the morphometric synthesis[J].Computer Vision and Image Understanding, 1997;66(2) :97~118
  • 3Luo B,Hancock E R.Iterative Procrustes alignment with the EM algorithm[J].Image and Vision Computing,2002 ;20: 377~396
  • 4Otto G P,Chau T K W,Region-growing algorithm for matching of terrain images[J].Image and Vision Computing,1989;7(2):83~94
  • 5Feldmar J,Ayache N,Rigid. Affine and locally affine registration of free-form surface[J].International Journal of Computer Vision, 1996; 18(2) :99~119
  • 6Moshfeghi M ,Ranganath S,Nawyn K.Three-dimensional elastic matching of image volumes[J].IEEE Trans on Image Processing,1994;3(2): 128~138
  • 7Jain A K,Zhong Y,Lakshmanan S.Object matching using deformable templates[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1996; 18(3) :267~278
  • 8Hopcoft J E,Huttenlocher D P,Wayner P C.Affine invariants for model-based recognition,Geometric Invariance in Computer Vision[M].Cambridge:Mass,MIT Press ,USA, 1992: 354~374
  • 9Taubin G,Cooper D B.Object recogntion based on moment(or algebraic)invariant,Geometric Invariance in Computer Vision[M].Cambridge:Mass, MIT Press, USA, 1992: 375~397
  • 10Umeyama S.Least-squares estimation of transformation parameters between two point patterns[J].IEEE Pattern Analysis and Machine Intelligence, 1991; 13 (4) :376~380

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部