摘要
建立了一种基于初始构形及有限变形的粘塑性弹性本构关系,并由空间描述的Galerkin能量弱变分原理,经一致转换得一整体拉格朗日方程描述下的动量平衡方程,同时经线性化处理给出了显示中心差分法求解格式,以棒材通过锥形模的静液挤压成形为例进行了全面的EFG法数值模拟,从而证明了有限变形粘塑性EFG法对实际成形工艺分析、优化及设计的有效性。
The constitutive equations of non-Newtonian fluids are characterized primarily by a Non-linear relationship of Cauchy stress and strain rates. Total Lagrange equilibrium equations are derived through consistent transformation of the spacial weak equilibrium equations, after which the central difference method solution formulas of the nonlinear equilibrium equations are given by linearization. An overall element-free method simulation on conical die rods hydrostatic extrusion process is performed. These justified the effectiveness of the finite deformation visco-plastic meshless method in die designing, forming process optimization and analysis on technology.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2004年第6期647-652,共6页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金(50075025)
湖南省自然科学基金(01JJY2089)
跨世纪优秀人才培养计划基金
教育部优秀青年教师资助计划(教人司(2002)350)资助项目.
关键词
无网格法
有限变形
粘塑性
静液挤压
Extrusion
Galerkin methods
Linearization
Strain rate
Stresses
Viscoplasticity