期刊文献+

一般条件下牛顿下降法的收敛性

Convergence of Newton- Decline Method Under Common Conditions
下载PDF
导出
摘要  对于求解非线性方程f(x)=0,牛顿下降法xn+1=xn-ωnf′-1(xn)f(xn)是一种经典的迭代法,具有大范围收敛等优点,有必要研究其收敛条件。为了使其能够适应更多环境的需要,在一个更一般的条件下,选取了一个较为一般的下降因子序列{ωn},证明了此情形下牛顿下降法的收敛性。该条件可以表示为‖f′-1(x0)·L(u+‖x-x0‖)dx,而此条件f(x0)‖≤β,‖f′-1(x0)f″(x0)‖≤γ,‖f′-1(x0)(f″(x)-f″(y))‖≤∫‖x-y‖0比传统的Kantorovich型条件更具有一般的代表性,主要表现为不减的正的有界函数L(u)取值的灵活性,能够适应更多的环境。 Newton-decline method x_(n+1)=x_n-ω_nf′^(-1)(x_n)f(x_n) is a traditional iterative method for solving nonlinear equation f(x)=0,and has big range of convergence.It is necessary to research its convergent conditions. To make it more meaningful in general, by choosing a common decline factor sequence{ω_n} under a more common condition, the convergence of Newton-decline method was proved. This condition can be expressed as ‖f′^(-1)(x_0)f(x_0)‖≤β,‖f′^(-1)(x_0)f″(x_0)‖≤γ,‖f′^(-1)(x_0)(f″(x)-f″(y))‖≤∫^(‖x-y‖)_0L(u+‖x-x_0‖)dx, while the condition has more common quality than traditional Kantorovich-kind conditions, mainly lying on the flexibility of the no reducible and positive function L(u), and it can adapt to much more environments.
作者 李阳
出处 《辽宁石油化工大学学报》 CAS 2004年第4期90-92,共3页 Journal of Liaoning Petrochemical University
关键词 牛顿下降法 Kantorovich型条件 优界序列 收敛条件 Newton-decline method Kantorovich-kind condition Dominating sequence Convergent condition
  • 相关文献

参考文献8

二级参考文献38

  • 1王德人,赵风光.再论Broyden方法的收敛性[J].数学年刊(A辑),1993,1(3):341-349. 被引量:2
  • 2王兴华,韩丹夫.点估计中的优序列方法以及Smale定理的条件和结论的最优化[J].中国科学(A辑),1989,20(9):905-913. 被引量:22
  • 3李光烨.对于Broyden方法和Schubert方法Kantorovich型分析的一些改进[J].工程数学学报,1985,2(1):135-138.
  • 4[1]YAMAMOTO T. On the method of tangent hyperbolas in Banach spaces [J]. J Comput Appl Math, 1998,21(3):75-76.
  • 5[3]WANG Xing-hua. The error estimates of Halley's method [J]. Numerical Mathematics, 1997,6 (2): 231-239.
  • 6[5]HAN Dan-fu. The majorant method and convergence for solving nondifferentiable equations in Banach space[J]. Applied Mathematics and Computation, 2001,11(8):73-82.
  • 7[6]ARGYROS I K. On the solution of equation with nondifferentiable and Ptak error estimates [J]. BIT,1990,30(1) :752-754.
  • 8[7]黄正达.Broyden方法的收敛性[J].浙江大学学报(理学版),2002,29(1):25-30.HUANG Zheng-da. On the convergent condition of the Broyden method [J]. J of Zhejiang University (Science Edition), 2002, 29(1): 25-30.
  • 9[1]KANTOROVICH L V, AKILOV G P. Functional Analysis[M]. New York: Pergamon, 1982.
  • 10[2]ORTEGA J M, RHEINBOLDT W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Academic Press, 1970.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部