摘要
本文讨论了紧致符号空间上拓扑 Markov 链的混沌性质,证明了定理:设 A 为k×k 0,1-方阵,如果 A 的有向图有一个顶点有两条不同的不可约闭路,则(∑_A,δ_A)存在不可数无穷多个彼此不相交的混沌集。
In the present paper,the following theorem is proved.Theorem :Let A=(a_ij)be a k×k 0,1—matrix and σ_A:∑_A→∑_A be the subshift determinedby A,if the directed graph A have two different irrecducible cycles through a certainvertex.Then there exists uncountable infinitely many chaotic sets of(∑_A,σ_A).which are disjoint.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
1993年第2期26-30,37,共6页
Journal of Nanjing Normal University(Natural Science Edition)
关键词
拓扑马氏链
浑沌集
有向图
Topological markov chain
Chaotic set
Full shift