期刊文献+

一类基于分治原理的多种群协同进化算法 被引量:5

Multi-population co-evolutionary algorithm based on the 'divide and conquer' principle
下载PDF
导出
摘要 根据脑生理学和社会分工的特点和方式,提出一类"分而治之"多种群进化算法。该算法在任务分解机进行任务分配后,子种群独立完成所分配任务,与其它群体几乎不发生联系。在子伤务完成后,各子群中的优秀分子组成新的种群,在整个问题空间完成进化,然后由决定机构根据情况选择相应的可能行动。最后就两个复杂多模态函数优化问题对该算法进行了实验研究,结果表明:合理的"分而治之"方法在效率和效果上明显优于单种群方法。 According to the characteristics and modes of brain physiology and social work division, a multi-population genetic algorithm is presented based on the 'divide and conquer' principle. After assignment of tasks, sub-populations implement their own assigned tasks respectiyely without almost any connection with others. A new population consists of excellent ones of each evolved sub-population and is evolved within the whole search space, and at last, corresponding actions are taken based on the results by the decision unit. Experimental studies are fulfilled on complex multi-mode function's optimization problems. Results demonstrate that the 'divide and conquer' method is much better than the single population counterpart in effectiveness and efficiency.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第11期1687-1690,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60174039) 华中科技大学优秀博士论文基金(2002032)资助课题
关键词 “分而治之”法则 多种群进化 协同进化算法 'divide and conquer' principle multi-population evolution co-evolutionary algorithm
  • 相关文献

参考文献15

二级参考文献29

  • 1徐宗本,李国.解全局优化问题的仿生类算法(I)—模拟进化算法[J].运筹学杂志,1995,14(2):1-13. 被引量:39
  • 2姚新,陈国良,徐惠敏,刘勇.进化算法研究进展[J].计算机学报,1995,18(9):694-706. 被引量:102
  • 3刘勇.非数值并行算法(第二册)-遗传算法[M].科学出版社,1997.1.
  • 4刘勇 康立山 等.非数值并行算法(第二册)-遗传算法[M].科学出版社,2000..
  • 5[1]Richard K Belew, Michael D Vose. Foundations of Genetic Algorithms 4. San Francisco, Calif: Morgan Kaufmann Publishers, Inc., 1997
  • 6[2]Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge, Mass: The MIT Press, 1996
  • 7[3]De Jong K A. Genetic algorithms: A 25 year perspective. In: Proceedings of the Fifth International Conference on Genetic Algorithms,Los Altos,CA: Morgan Kaufmann Publishers, 1993
  • 8[4]Mahfoud S W. Crowding and pre-selection revisited. In: Parallel Problem Solving from Nature, Manner R, Manderick B (eds.). Berlin: Springer, 1992. 67~76
  • 9[5]Mengshoel O J, Goldberg D E. Probabilistic crowding: Deterministic crowding with probabilistic replacement. In: Proceedings of the Genetic and Evolutionary Computation Conference 1999 (GECCO-99),Banzhaf W et al.(eds.). San Fransisco, CA: Morgan Kaufmann, 1999. 173~179
  • 10[6]Goldberg D E, Deb K, Horn J. Massive multi-modality, deception, and genetic algorithms. In: Manner R, Manderick B (eds.), Parallel Problem Solving from Nature, Berlin: Springer, 1992. (2):37~46

共引文献309

同被引文献58

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部