期刊文献+

频繁项目集二次挖掘方法研究

Research on mining updating method for frequent itemsets
下载PDF
导出
摘要 针对关联规则数据挖掘中频繁项目集的二次挖掘问题,提出了一种能够解决当最小支持度发生变化而交易数据库不变情况下进行二次挖掘的改进算法(UMSA)。该算法充分利用频繁项目集的特性,通过新的拼接方法来减少候选项目集的生成,在扫描交易数据库确定k维频繁项目集时,采用在交易数据库中剔除无用的交易,达到不断减小交易数据库规模的目的,克服了一些算法中存在的漏采现象,并在一定程度上解决了非确定性问题。通过举例说明该算法的执行过程及其算法的正确性和有效性,并对其性能进行了分析。 To mine is updated for frequent itemsets, an improved algorithm is put forward to mine frequent itemsets again based on changeable minimum support in an unchangeable database. The characteristics of the frequent itemsets are utilized fully in the algorithm by a new jointing way to decrease candidacy itemsets and by rejecting useless affairs in the scanning database to decrease gradually its scale. The algorithm overcomes the miss mining and nondeterminate polynomial degree found in some algorithms. In the end an example is given to demonstrate the algorithm and its performance is analyzed.
作者 杨君锐
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第11期1701-1704,共4页 Systems Engineering and Electronics
关键词 关联规则 二次挖掘 频繁项目集 association rules mining again frequent itemsets
  • 相关文献

参考文献8

  • 1Agrawal R,Imielinski T,Swami A. Mining association rules between sets of items in large databases[C]. SIGNOD, 1993. 207-216.
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. VLDB, 1994. 487-499.
  • 3Cheung D W, Han J, Ng V, et al. Maintenance of discovered association rules in large databases: an incremental updating technique[A]. Proc. of the 12th International Conference on Data Engineering[C]. New Orleans, Louisana, 1996.106-114.
  • 4Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules[A]. Proc. of Databases Systems for Advanced Applications[C]. Melbourne,Australia, 1997.185-194.
  • 5朱玉全,孙志挥,季小俊.基于频繁模式树的关联规则增量式更新算法[J].计算机学报,2003,26(1):91-96. 被引量:80
  • 6冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 7周海岩.关联规则的开采与更新[J].软件学报,1999,10(10):1078-1084. 被引量:40
  • 8朱玉全,孙志挥,赵传申.快速更新频繁项集[J].计算机研究与发展,2003,40(1):94-99. 被引量:63

二级参考文献19

  • 1Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 2[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 3[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 4[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 5[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 6[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 7[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 8[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194
  • 9[10]Han J, Jian P. Mining access patterns efficiently from web logs. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'00), Kyoto, Japan,2000. 396~407
  • 10[11]Agrawal R, Srikant R. Mining sequential pattern. In: Proceedings of the 11th International Conference on Data Engineering, Taipei, 1995. 3~14

共引文献325

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部