期刊文献+

一类确定线性伪抛物型方程边界值的反问题 被引量:3

A Class of Inverse Problems of Determining the Unknown Boundary Data fora Linear Pseudoparabolic Equation
下载PDF
导出
摘要 讨论了一类线性伪抛物型方程边界值的反问题.首先,应用Reimann函数方法求出了相应正问题的形式解,然后根据附加条件将反问题转化成求解第二类Volterra积分方程的问题,从而证明了反问题边界函数的存在唯一性. This paper deals with a class of inverse problems of determining the unknown boundary data for a linear pseudoparabolic equation. Firstly, Riemann function method is used to work out the general representation of the inverse problem. Then the inverse problem is reduced to a problem of solving a Volterra integral equation of the second kind by additional condition. Finally, the existence and uniqueness of the unknown boundary data are verified.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第6期603-606,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 反问题 伪抛物型方程 边界值 存在唯一性 Inverse problem Pseudoparabolic equation Boundary data existence and uniqueness
  • 相关文献

参考文献3

  • 1Showalter R E, Ting T W. Pseudoparabolic partial differential equations[J]. SIAM J Math Anal Appl,1970,(1):1-26.
  • 2David C. Pseudoparabolic equations in one space variable[J]. J Diff Equa,1972,12:559-565.
  • 3Garabedian P R. Partial Differential Equations[M]. New York:John Wiley,1964.

同被引文献23

  • 1王泽文,徐定华.流域点污染源识别的唯一性与计算方法[J].宁夏大学学报(自然科学版),2006,27(2):124-129. 被引量:11
  • 2葛美宝,徐定华,王泽文,张文.一类抛物型方程反问题的数值解法[J].东华理工学院学报,2006,29(3):283-288. 被引量:7
  • 3谭启建,冷忠建.一类退缩非线性自由边值问题弱解的存在唯一性[J].数学杂志,2006,26(6):657-664. 被引量:2
  • 4Bai Dong-hua. A free boundary problem governed by nonlinear degenerate equations of parabolic type [ J]. J Partial Differential Equations, 1992,5 ( 2 ) : 37-52.
  • 5普牢特,温伯格.微分方程的最大值原理[M].北京:科学出版社,1985.
  • 6Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems [ M ]. New York:Springer- Verlag,2011.
  • 7Tikhonov A N, Arsenin V Y. Solutions of Ill- Posed Problems[ M]. New York:John Wiley & Sons,1977.
  • 8Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems [ M ]. Dordrecht : Kluwer Academic Publishers, 1996.
  • 9Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind [ M ]. Boston: Pitman, 1984.
  • 10Hofmann B, Yamamoto M. Convergence rates for Tikhonov regularization based on range inclusions [ J ]. Inverse Problems,2005, 21(5) :805 -820.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部