期刊文献+

基于分布估计算法的输电网扩展规划 被引量:6

TRANSMISSION NETWORK EXPANSION PLANNING BASED ON ESTIMATION OF DISTRIBUTION ALGORITHMS
下载PDF
导出
摘要 分布估计算法是一类新的进化算法,它通过统计在当前群体中选出的个体信息给出下一代个体分布的概率估计,用随机取样的方法生成下一代群体。文章将分布估计算法应用于求解输电网扩展规划问题,提出了两种基于分布估计算法(基于群体的递增学习算法和因子分布算法)的电力系统输电网扩展规划模型,分析了加权估计、随机母本规模选择、条件概率链的重新排列、随机变异和精英保留等改进策略对算法的影响。仿真分析结果表明了文中所采用的分布估计算法在求解输电网扩展规划问题时是可靠有效的。 Estimation of distribution algorithms (EDA) is a new kind of evolution algorithm, through the statistics of the information of selected individual in current group the probability estimation of the individual distribution in next generation is given, and the next generation of group is formed by random sampling. Here, the EDA is applied to solve the transmission network expansion planning problem, two models of transmission network expansion planning based on EDA, i.e., the population-based incremental learning: (PBIL) and factorized distribution algorithm (EDA), are put forward. The influence of several strategies, such as weighted estimation, random size of parents set selection, readjusting of the conditional probability sequence, stochastic mutation and elitist reserved on the algorithm is analyzed. Simulation results show that the used EDA is reliable and effective for solving the transmission network expansion planning problems.
出处 《电网技术》 EI CSCD 北大核心 2004年第23期32-37,共6页 Power System Technology
关键词 输电网 电力系统 随机取样 仿真分析 扩展 可靠 学习算法 规划 规模 统计 Algorithms Computer simulation Estimation Learning systems Planning Problem solving Random processes
  • 相关文献

参考文献12

  • 1LatorreG, CruzRD, AreizaJMetal. Classification of publication and models on transmission expansion planning[J]. IEEE Trans on Power Systems, 2003, 18(2): 938-946.
  • 2Alguaci N, Motto A L, Conejo A J. Transmission expansion planning: a mixed-integer LP approach[J]. IEEE Trans on Power Systems,2003, 18(3): 1070-1077.
  • 3Haffner S, Monticelli A, Garcia A et al. Branch and bound algorithm for transmission system expansion planning using a transportation model[J] . IEE Proceedings-Generation , Transmission and Distribution, 2000, 147(3): 149-156.
  • 4Binato S, Oliveira G C, Araujo J L. A greedy randomized adaptive search procedure for transmission expansion planning[J]. IEEE Trans on Power Systems, 2001, 16(2): 247-253.
  • 5Gallego R A, Monticelli A, Romero R. Transmission system expansion planning by an extended genetic algorithm[J]. IEE Proceedings-Generation, Transmission and Distribution, 1998, 145(3): 329-335.
  • 6Silva E L, Ortiz J M A, Oliveira G C et al. Transmission network expansion planning under a Tabu search approach[J]. IEEE Trans on Power Systems, 2001, 16(1): 62-68.
  • 7Muhliebei H, Paass G. From recombination of genes to the estimation of distribution Part 1, binary parameter, lecture notes in computer science[Z]. Berlin, Germany: Springer-Verlag, 1996, 1141, Parallel Problem Solving from Nature-PPSN: 178-187.
  • 8Zhang Q. On stability of fixed point of limit models of univariate marginal distribution algorithm and factorized distribution algorithm[J]. IEEE Trans on Evolutionary Computation, 2004, 8(1): 80-93.
  • 9Zhang Q, Muhliebei H. On the convergence of a class of estimation of distribution algorithms[J]. IEEE Trans on Evolutionary Computation, 2004, 8(2): 127-136.
  • 10Pelikan M, Godberg D E, Paz E C. Linkage problem, distribution estimation, and Bayesian networks[J]. Evolutionary Computation, 2000, 8(3): 311-340.

共引文献1

同被引文献88

引证文献6

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部