期刊文献+

一个边界振荡的台球模型 被引量:2

A bouncing ball model with a oscillating border
下载PDF
导出
摘要 研究了一种边界周期振荡的台球模型,使台球场在半圆和略小于半圆之间周期转换,解析地导出了描述这个经典台球系统动力学行为的映象方程.对台球仅在半圆和略小于半圆的台球场内无耗散运动的2种极端情况进行了解析与数值分析,说明这2种情况下台球都呈现典型的保守系统特征.初步数值研究表明,边界周期振荡的模型会显示耗散的特征. This article suggests studying a bouncing ball model where a discontinuous borderline oscillates so that the poolroom periodically transfers between a semi-cycle and an even smaller one. The mappings, which describe the system's dynamics, have been deduced analytically. For the two extremities, i. e. the conservative motion of the classic particle inside the fixed semi-cycle and the smaller poolroom, the analytic and numerical investigation shows that typical conservative features are displayed. However, the first step investigation confirms that the border-oscillating model can display dissipative behavior, therefore it has the value for a further study.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2004年第4期27-31,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10275053)
关键词 分段光滑 台球模型 边界振荡 piecewise smooth bouncing ball model borderline oscillate
  • 相关文献

参考文献10

  • 1汪秉宏.弱混沌与准规则斑图[M].上海:上海科技教育出版社,2001..
  • 2WANG J,DING X L,HU B,et al.Characteristics of a piecewise smooth area-preserving map [J].Phys Rev E,2001,64: 1~9
  • 3WANG J,DING X L,WANG B H,et al.Quasi-attactors in a piecewise smooth area-preserving map [J].Chin Phys Lett,2001,18: 12~15
  • 4丁晓玲,王健,王旭明,何大韧.一类不可逆保守系统中的混沌类吸引子[J].物理学报,2002,51(3):482-486. 被引量:5
  • 5丁晓玲,朱桂萍,王健,何大韧.一类加保护的电子张弛振荡电路的行为特性[J].扬州大学学报(自然科学版),2001,4(4):15-18. 被引量:3
  • 6JIANG Y M,HE D R.Strange quasi-repeller in a kicked rotor [J].Plas Sci & Tech,2003,5(3): 1855~1860
  • 7ROBINETT R W.Quantum mechanics of the two-dimensional circular billiard plus baffle system and half-integral angular momentum [J].Eur J Phys,2003,24: 231~243
  • 8BORGONOVI F,CASATI G,LI B W.Diffusion and localization in chaotic billiard [J].Phys Rev Lett,1996,77: 4744~4745
  • 9KRULLE C A,KITTEL A,PEINKE J,et al.Chaotic billiards seen as mirror cabinet [J].Physica D,1997,102: 227~228
  • 10REE S,REICHL L E.Classical and quantum chaos in a circular billiard with a straight cut [J].Phys Rev E,1999,60: 1608~1615

二级参考文献11

共引文献6

同被引文献21

  • 1BORGONOVI F, CASATI G, LIB W. Diffusion and localization in chaotic billiards [J]. Phys Rev Lett,1996, 77: 4744-4747.
  • 2CASATI G, PROSEN T. The quantum mechanics of chaotic billiards [J]. Phys D, 1999, 131: 293-310.
  • 3HELLER E J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems., scars of periodic orbits[J]. Phys Rev Lett, 1984, 53: 1515-1518.
  • 4McDONALD S W, KAUFMAN A N. Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories [J]. Phys Rev Lett, 1979, 42: 1189-1191.
  • 5VERGINI E, SARACENO M. Calculation by scaling of highly excited states of billiards [J]. Phys Rev E,1995, 52: 2204-2207.
  • 6ZHANG C W, LIU J, MARK G R, et al. Quantum chaos of Bogoliubov waves for a Bose-Einstein condensate in stadium billiards [J]. Phys Rev Lett, 2004, 93: 074101-1~074101-4.
  • 7FUCHSS K, REE S H, REICHL L E. Scattering properties of a cut-circle billiard waveguide with two conical leads [J]. Phys Rev E, 2001, 63: 016214-016234.
  • 8REE S H, REICHL L E. Abaronov-bohm effect and resonances in the circular quantum billiard with two leads[J]. Phys Rev B, 1999, 59: 8163-8169.
  • 9LI B W, ROBNIK M, HUB B. Relevance of chaos in numerical solutions of quantum billiards [J]. Phys Rev E, 1998, 57: 4095-4105.
  • 10BACKER A. Numerical aspects of eigenvalue and eigenfunction computations for chaotic quantum systems[J/OL]. http ://arXiv. org/abs/nlin/0204061, 2002 -04 - 25.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部